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On Strong Solutions of Stochastic 
Differential Equations* 

A. K. Zvonkin and N. V. Krylov 

1. Definitions, examples, discussion 

1. Introduction. For the last two decades most authors writing on 

random processes have used the words “‘solution” of a stochastic differen- 

tial equation, uniqueness of a “solution” etc., not realizing that the word 

“solution” was being used in different senses in different works. This has 

led to much confusion (and even outright errors in some cases), and only 

the introduction of the notion of “strong” and “weak” solutions as well as 

“strong” and “weak uniqueness” could resolve this problem. On examina- 

tion of extant works it appears that the classical Ito theorem is the only 

result on the existence and uniqueness of strong solutions [see 6], and that 

most of the “stronger” versions and generalizations [see 21, 12, 23, and 

others] are actually valid only for “weak” solutions. The problem of the 

existence of strong solutions has had to be re-examined: some cases have 

been resolved, others appear to be very difficult to settle. ‘The objective of 

our survey is to describe the situation at the present time.** 

2. Notation 

1. Let {2,F,P} be a probability space and R” an n-dimensional 

Euclidean space equipped with an affine structure, i.e., each point x ER" 

is associated with an n-dimensional space L’ having the coordinate origin 

at x (and a natural identification operation among all L?, xER"). A 

scalar product induced by the metric in R” is fixed in L”. Cartesian 

*Originally published in Trudy shkoly-seminar po teorii sluchaynykh protsessov, part 2 
(1975) Vilnius. Translated by A. B. Aries. 

**The authors are thankful to A. N. Shiryayev and all the participants of the Seminar on 
the Theory of Stochastic Processes for their very useful discussions throughout. 
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20 ZvoONKIN AND KryLov 

coordinates are fixed in R". We consider the stochastic integral equation 

xa ["0(s,x,) dot f'0(s,x,) du, (1) 

where xER"; t€ [0,7]; x,, x, are random variables with values in R’; 
6(t, x) is a vector field on R", that is, for all (t, x) €[0, 7] XR” the vector 
b(t, x) EL'; for each (t,x) €[0,7T]ER", o(t, x) is the matrix 

(1) 
uy, 03 4.55%%5 Oj, 

(" .. s ) of a linear mapping o: L?->L"; w,= - | ER" is a 
nl?***9 Onn 

standard n-dimensional Wiener process. ws") 

The second integral on the right-hand side of (1) is an It6 integral [see 
17]. 
We shall often write Eq. (1) as a differential equation: 

dx, =b(t, x,) dt+oa(t, x,) dw,, 

Xo =x. (2) 

2. If €, =£,(w) is some random process on {Q, F, P} then: 
£, is the value of the process at time ¢€[0, 7 ]; 

§ is the trajectory of the process on a time interval [0, ¢]; 

Fé is the o-algebra of subsets of 2 generated by the sets {w: £,(w) € 

I}, where s <¢, the [’ are Borel sets in the range of values of £,; as a 

rule we shall assume that the o-algebras Ff are complete in all 

probability measures on Q; 
H* (0, t] is the family of K*-measurable random variables; 

H§[0,t] is the family of square-summable random variables in 

H*(0, ¢]. 
3. For a mapping f: R"—>R” we have [see 20, for example]: 

The derivative f’(x) is the linear mapping L” =F (where y= f(x) 

ER”) given by the m Xn matrix (df; /0x;). 
The second derivative f”(x) is a bilinear mapping L? x L’>L?. 

For a mapping /: R” XR oR, (x, y)=z, we denote by Lis, y) and 

m , the linear subspaces of the space L. %) that are parallel to R" and 
(x9) : TE since a . 

R™ respectively. Then the partial derivative f(x, y) is a linear mapping 

Lh, y) OLE 
The second partial derivative f/{(x, ») is a bilinear mapping 

” n n k LARD): Loe, ¥) X Li, yy PL: , , 

In similar way we define the derivatives f(x, »), hy (* 9), Ao(% 7). 

4. We introduce the symmetric matrix a(t, x)=o-o* (here o* is the 

transpose of the matrix @); it will play the role of a bilinear form on L*, 
a: L" XL" >R).' 

'It would be more correct to regard a as a bilinear form on the space (L”)* dual to L?; 

we have identified L? and (L?)* by fixing a scalar product in L?.
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Let ¢,,...,¢ be an arbitrary basis in L’, and let d,,...,d, be its 

orthogonal basis (i.e., (¢,, d;)=9;,).” 
We can determine the differential operator L“” corresponding to the 

process x, as follows. For u:[0,7]xXR"—R”, 

x / / ‘ 1 = “” ROu(t,x)=ul +u/ +ui-b(t,x)+ 2 p> teal is 6 )a(ts x)(dirds).” (3) 
j= 

5. It will be convenient to choose |(a;;)|=max;;|a,;;| as the matrix 
norm: 

  

of. 
(l= max| 24 (29), 

tJ J 

2 

Lf") |= max Ix, x, ("| 
    

For a region DCR" the space wy? ({0,7]x<D), p>1, is the comple- 

tion of the family of infinitely differentiable functions in the norm 

Ju(t,x)|wa2=lle(t, «ile +ller(t, ile +ller(t,xilz., 
- e ? - 

where 

1/p 

iearne=( f, saupl Ht) Pata) 

In a similar way we define the space W,(D) (dropping the term with 

derivative in ¢ and integrating over D). For a more detailed discussion of 

the spaces W see [22], [15]. 

If the function u(t, x) defined on [0, 7] X R” belongs to the space WS 

({0, 7] D) for any bounded region DCR", we shall simply write UE 

we We introduce a similar notation for the spaces Ww, L,. 

3. Definitions 

1. Srronc so.ution. Given is a probability space {Q2, F, P} with a 

Wiener process {w,, F;”}. Also given are measurable functions 6,: [0, 7] x 
R">R, k=1,...,n, 9,;: [0, T]X R°R, t, j= 1,..., 0. 

The problem is to construct a process x, which is measurable with 

respect to the o-algebra F,” for each ¢ (ie., x, €H (0, ¢] for all ¢€[0, 7 ]) 

and such that (1) is satisfied for all t€[0,7'] with probability one. The 

pair of processes {(x,,w,), &“} is said to be a strong solution of Eq. (1) (or 

Eq. (2)). 

2Note that if the basis ¢,,...,¢, is orthonormal, ¢, =d,. 

3-The sum on the right-hand side of Eq. (3) does not depend on the choice of the basis (see 

[2}).



22 Zvonkin AND Krytov 

2. Weak soLuTion. We are given only the two functions b,(t, x) and 
g;,(t, x). The problem is to construct a probability space {Q, F, P} and a 
pair of processes {(x,,w,), &} such that {w,, &} is a Wiener process and 
(1) holds for all ¢€ [0,7] with probability one. Such a pair of processes 
{(x,, w,), F} is said to be a weak solution of Eq. (1) (or Eq. (2)). 

3. The formal difference between the two definitions above is that: 

a) a strong solution and a weak solution are solutions to two different 

problems: in one case we need to construct only x, (everything else 

is given), in the other case we need to construct {2, F, P, F,, w,, x,; 

b) (crucial!) if (x,,w,) is a weak solution, x, need not be measurable 

with respect to the o-algebra of F;”. 

Actually, as we shall see from the results in §2, the difference between 

strong and weak solutions is much deeper and is not merely formal (i.e., 

due not only to measurability). 

Remark. We shall permit the following “abuses” in our notation. 

a) By a weak solution we mean not the pair of processes (x,, w,) but 

the process x, itself. 

b) We shall call the process x, a strong solution if it turns out to be 

F,*-measurable (therefore, a weak solution may be strong). 

c) We call a weak solution simply a “solution” of Eq. (1). 

The next two notions of uniqueness are identical for both weak and 

strong solutions. 

4, STRONG UNIQUENESS (uniqueness with respect to sample paths). If 

for any two solutions (x;,w,) and (x,’,w,;’) on the same probability 

space, it follows (a.s.) from the equalities xg =xg and w; =w," that 

P{ max |x; —x/|>0}=0, (4) 
t€[0, 7] 

then we say that the solution of Eq. (1) is unique in the strong sense, or unique 

with respect to the sample paths, or simply, pathwise unique. 

5. WEAK UNIQUENESS (uniqueness in measure). If for any two solu- 

tions (x/, w/) and (x,’, w,”) of Eq. (1) all the finite-dimensional distribu- 

tions coincide in all the pairs of processes mentioned above, we say that 

the solution of Eq. (1) is unique in the weak sense, or unique in the sense of 

measure.
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#4. Examples 

Example 1. In this example we demonstrate a canonical technique for 
constructing weak solutions. We shall construct a solution of the equation 

ir steed a 6) 
x9 =0, 

where a(t, xg) is a bounded nonanticipatory (i.e., F*-measurable for each 
t) functional. 

Let us take an arbitrary Wiener process £, and consider the new process 

t 
=£,— | a(s,&5)ds. m= 8 — fas, 5) 

It is well known (see [4] or [16]) that the process 7, also is a Wiener 

process, with respect, however, to a new measure P which is absolutely 

continuous with respect to the initial measure P, with Radon-Nikodym 
derivative: 

T 1 ¢T 
a(t,§5)dé,-= a(t, £5) at}. exp{ [7a(1, £5) d&,— 5 [70°C €) 

Taking this new measure P, we see that n, is a Wiener process and 

= fas, €) dsm; 

i.e., if we write x, =,, w, =n,, we get a solution of Eq. (5). Note that the 

same (initially Wiener) process €, can be a solution of Eq. (5) for various 

a(t, xg). In that case the measure P and the Wiener process 7, change. 

First we construct the required process x,. Further, we choose the measure 

P and the Wiener process w, (we choose them instead of specifying them 

in advance). As a result, instead of x, H“[0,¢], we have, conversely, 

w, © H*(0, ¢]. 
The following question arises. As we have shown, a solution exists with 

one Wiener process (the one we have constructed). If, however, we are 
given in advance another Wiener process, can it happen that a solution 

does not exist in this case? What is then the difference between these two 

Wiener processes? 

This is a strange question, and it has not yet been answered. Obviously, 

the question itself needs to be more precise. We can only note that in 

order to construct x, from w, in some way, we need to express x, in terms of 

w,, using a measurable mapping. This is exactly what a weak solution 

cannot do. 

Example 2 (H. Tanaka). ‘This example shows that in fact there exist 

weak solutions that are not strong, and that uniqueness in measure does 

not imply uniqueness with respect to sample paths.
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Consider the equation 

dx, =0(x,) dw,, 
(are (6) 

where o(x)= { i (note that o°(x)=1). 
Shy ’ 

a) Weak uniqueness. The martingale x, = {5 o(x,)dw,, according to [17, 

§2.5], is a Wiener process with respect to a new time 7,= 

fo.07(x,)ds=t, which coincides in this case with the old one. 

Therefore, any solution x, has the same (namely, Wiener) finite- 

dimensional distributions. 

b) The existence of a weak solution. Taking an arbitrary Wiener process 

for x,, we construct wW, = fj o(x,)dx,. The process is also a Wiener 

process (it is possible to make a time substitution as we did in (a)), 

so dw, =0(x,)dx,, yielding 

a(x,) di, =0(x,)a(x,) dx, =dx,. 

Therefore, (x,, ,) is a (weak) solution of Eq. (6). 

c) The absence of strong uniqueness. In addition to the solution (x,, w,), 

Eq. (6) has at least one more solution, (—x,, @,). 

d) The absence of a strong solution.* No solution of Eq. (6) is strong; i.e., x, 

is known to be non-measurable with respect to the o-algebra of F;”. 

To make sure this is so, consider the random variable 8,—the local 

time during which the process x, sojourns at the zero point. Since 

the process x, is a Wiener process, 8, is representable in the form 

(see [17], §3.8) 

0, =x, = [xt0,c0f %) de. 

(Here x * = max(x,0); x = —min(x,0) 

nwnt=() elcaty' 
Due to the obvious symmetry, 

6, =x, + [x (-c0,0)(4) de 

Adding the last two equalities, we get 
t 

20, =|%,|— f‘sgnx, de, =|x|— f'sgn x0(x,) dey =|x1] wr, 

*Non-measurability of x, with respect to F;” follows from the general theory developed in 

§2 (see Corollary 3 of Theorem 1). For this particular case, however, we can give a special 

proof.
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yielding, by the definition of local time, 

4 . L fe 
w, =|x,|— 20, =|x,|— lim — f Xo, e)(1%,1) ds, 

e+0 © 40 

i.¢., w, is measurable and can be expressed in terms of |x,|, and 

F* CF"!, Assuming that x, EH“ (0, t], ic. BX CK", we arrive at 
the incompatible relation F* c F""!, 

Example 3. This example develops further the idea in Example 2. 

Consider the two-dimensional version of Example 2: 

dx, =a(x,) dw, 

Xo =0, 
(7) 

where 

o(x)= 

x| —~X2 

V' 2 2 Vi 2 2 
Xp +x xp xD 1 Ps 8) 

=— . 

*2 *| r\*2 x) 

yx +x3 Vet +x3 

Note that the matrix o(x) is orthogonal for all x and _ infinitely 

differentiable everywhere except at the point x=0, where the matrix o(x) 

is discontinuous. 

a) We shall now construct a weak solution. To this end, we take for x, 

an arbitrary Wiener process. And we construct the process w, by 

the formula 

w, = ['o ~"(x,) dw,. 
0 

The pair of processes (x,,w,) yields a solution since dw, = 

0 '(x,)dx,, or dx, =0(x,) dw,. 

That the process w, thus constructed is a Wiener process follows 

from the orthogonality of the matrix o: because o ~'=9* we have 

(wl, wl) = [(a- "(0 ~")* , ds =5't, 
0 My 4 

since 0 '(o _')*=£ (the unit matrix) (for the definition of ¢-, +), 
see [16], Ch. 5, §1). 

b) Similarly, for the process x, we have 

EL x9, x1] = ["(o0*), ds=83t; 
0 

i.e., any solution x, of Eq. (7) has Wiener measure. 

c) It is easy to verify that in addition to the solution (x,, w,) Eq. (7) 

has an entire family of solutions (Ax,, w,), where A is an arbitrary 

orthogonal matrix. For 

d( Ax,)=A dx, =Aa(x,) dw,,
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and it remains only to verify that Ao(x)=0(Ax), which is im- 

mediate, 

d) The absence of a strong solution follows from Theorem 1, §2 (see 

Corollary 3). 

Note that if we took an initial point xy #0, the solution would be 

strong and pathwise unique (and would remain so until it leaves the 

region where o(x) is smooth, i.e., the region R*\ {0}; the solution, being 

a Wiener process, will, however, never leave this region; that is, the 

solution will never get to the zero point). 

5. Discussion. In which cases is it sufficient to have a weak solution of 

Eq. (1), and in which cases is it necessary to have a strong solution? 

The difference between strong and weak solutions is very similar to the 

difference between a random variable and its distribution: by construct- 

ing a strong solution we construct a particular function x, =x(¢, w). 

Hence: 

1. Weak solutions are adequate in those situations where the answers 

to the questions we are concerned with involve only the measure on the 

space of trajectories. Such questions include: the determination of various 

probabilities and mathematical expectations; problems related to the 

stability of processes and to the existence of invariant measures; the 

problems of absolute continuity of measures for various processes; prob- 

abilistic representation of solutions of partial differential equations. 

However, there are situations where a diffusion process needs to be 

regarded as a particular family of trajectories. In such cases we must have 

a strong solution. We shall illustrate this by examples. 

2. There is a well-known result, referred to as “a comparison theorem” 

(see [3]): 
If x/ and x,’ are solutions of the equations 

dx; = b(t, x;) dt+dw, (8.1) 

dx,” = bo(t, x;') dt+ dw, (8.2) 

with xo =xq and 6,(t, x) >,(t, x), then for all ¢>0 we have x/ >x/’ (a.s.). 
This result makes no sense for weak solutions, if only because the latter 

may be given on different probability spaces. Even if we construct Eqs. 
(8.1) and (8.2) on the same space, as in Example 1, choosing the processes 
x, and x," in advance without knowing the coefficients 6, and b., we can 
ae x;(w)=x/'(w), or x/(w)= —x,’(w), etc.; i.e., the theorem does not 
1old.
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3. Another example occurs in the theory of diffusion control processes.” 
On the interval [0, 7'] let there be given 

dx, =u, dt+dw,, 
Xo =0, (9) 

where we can choose the control u, from the set {u:|u] <1}. We assume 

that our aim is to deviate as little as possible from zero (i.e., maximize one 

of the functionals 

M|x-r|, (10.1) 

Mx?., (10.2) 

M J "<2 dt, (10.3) 

or maximize one of the functionals 

M{1,/AT}, (10.4) 

P{|x7|<a}, (10.5) 

where 1, =inf{t:|x,| >a}, 7, /\7=min(7,,7), etc.). It is natural in this 

situation to drive the process x, as fast as possible to zero; i.e., to choose 
the control so that: 

ob. x, >0, 

u,= 0, x, =0, 

1, x, <0. 

Eq. (9) thus becomes 

(on ee (11) 

Xo =0. 

Note that the drift coefficient is discontinuous in this case, and hence 

the It6 theorem [6] cannot be applied to yield a strong solution. 

The value of each of the functionals (10.1)-(10.5) remains the same 

regardless of whether we consider a weak or a strong solution of Eq. (11). 
However, the meaning of our actions is fundamentally different; we have 

stopped controlling the process x,. In fact, the meaning of the control is that 

while observing an individual trajectory of x,, we try to bring it back to 

zero as soon as this trajectory deviates from 0. But in constructing weak 

solutions of Eq. (9) under various strategies u,, we do not in general 

change the process x,; we keep all the trajectories of x, unchanged. We 

change only the measure on the set of all the trajectories, although the 

behavior of the trajectories other than the one we are observing is of no 

concern to us. 

> It is difficult to say in what way this discussion is related to engineering control problems 

(perhaps in no way). Our discussion is thus confined to mathematical theory.
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Apparently, it is not possible to regard the mathematical theory of 

controlled diffusion processes as complete until sufficiently general results 

are obtained about the existence of strong solutions. 

4. We now consider the problem of filtering an unobservable compo- 

nent of a two-dimensional process. Let (6,, §,) be a process satisfying the 

equations 

d0, =a(t,0,,&,) dt+dw), 

dé, =A(t,0,, &,) dt+dw;. 

The problem is to estimate 9, from the trajectory &. It is well known (see 
[16], Ch. 8, §3) that the best mean-square estimate M(6,| F*) is represen- 

table in the form 

M(B,|FS)=M(lFE)+ [UJ ds [1] ae 
(the specific form of the integrands is of no interest to us), where w, is the 

Wiener process given by 

E,— ['M(A(s,8,, €,)1BS) ds. 

The construction shows that the process #, is F*-measureable, i.e., 

F* CF§. It is well known that the case when the process i, is an innovation 

process is particularly important, i.e., &” = &* (this means that no infor- 

mation has been lost in going from the process €, to the process w,), and 

the equality &” = F§ can be satisfied if and only if the equation 

df, =a(t, &) dt+dw, 

has a strong solution, where 

a(t, &)=M(A(t,4,,&,)|F). 

5. The result on strong uniqueness obtained in §3 leads to a corollary 

which looks paradoxical within the framework of the theory of ordinary 
differential equations. Consider the equation x=/(t, x), or more precisely, 

x, =xot ['S(s.,) a. (12) 

If f(t, x) does not satisfy a Lipschitz condition in x, a solution of Eq. 

(12) may not be unique (for example, s=2Vx, Xq =0; solutions of this 

equation will be x(¢)=0, x(t)=t7, and others). We add an arbitrary 

small stochastic part to the right-hand side of Eq. (12); i.e., we consider 

the equation 

x =x0+ ['f(s,x,)dstewy, (13) 

It turns out that for (almost) any trajectory wJ of the process w, the 

solution x, of Eq. (13) is unique. It will be unique even for the well-known
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example (see [5], Ch. II, §5) in which the equation x=/(t, x) exhibits 

nonuniqueness at each point x. 

Note that this corollary cannot be derived from the results on weak 

uniqueness of solutions of Eq. (13). The classical It6 theorem [6] proves 

the strong uniqueness of a solution of Eq. (13) only in the case where the 

function f(t, x) is Lipschitz in x, ie. when Eq. (12) has a unique solution. 

6. A survey of some results on weak solutions. Let the coefficients b(t, x) 

and o(t, x) in Eq. (1) satisfy the following conditions. 

A. 

B. 

Continuity of the matrix a(t, x): the matrix a(t, x)=o0* is con- 

tinuous in ¢ and in x. 

Uniform ellipticity of the operator L“?: there exists a number 

> 0 such that for any vector e€L? 

a(t,x)(e,¢)>ple|?. (14) 

Boundedness of the coefficients: there is a number c such that 

|b(t,x)|+lo(t,x)|<c. (15) 

Then the following assertions hold: 

1. 

2. 

A (weak) solution of Eq. (1) exists and is unique in measure. 

If solutions of Eq. (1) are considered on intervals [t, 7] C[0, 7] for 

initial values x, =x€R", each solution is a (nonstationary) strictly 

Markov process. 

We denote the mathematical expectation with respect to the 

measure corresponding to this process by M,, ,), and for t=0 we 

denote it by M,. 

Let DCR" be a bounded region. Let 7 be the time of first exit of 

the process x, from the region D. And let a function f(t, x) be 

given, fEL, ([0,7]xD), where p>n+1; we then have the esti- 

mate 

Mf" f(x) <NIIS lle, (16) 0 p 

where the constant N depends only on 7, p, c. If f(t, x) =f(x) does 

not depend on ¢, and if f€L,(D), the same estimate holds for p > n, 

N being independent of 7. 

Consider the process y,=u(t,x,), where the function u€ W,'?, 
pa2n+l. We assert that the Ito differential rule holds for the 

function u(t, x): 

du(t,x,)=[&u(t, x,) | dt+[ul(t, x,)o(t, x,)] de, (17) 

We call the function f(t, x) “slowly increasing” if it increases 

infinitely slower than e*!*!" for any k>0. Consider the equation 

ROOu(t, x) +f(t, x) =0, 

u(T,x)=(x), (18)
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where u:[0,7]XR">R”"; f:[0, T] XR" 3R"; p: R"R", f(t, x) 

and f(x) are slowly increasing functions, and fELp,pEW, for 

some p >n+2/2. Then: 
9. In the class of slowly increasing functions the solution u(t, x) of Eq. 

(18) exists, is unique, and u€ Ww. 

6. If p2>n+1, this solution has the probabilistic representation 

u(t x)=Mevo( [15% &+@(*7)). (1) 

Assertions 1, 2 have been proved in [23]; assertion 5 has been proved in 

[15]; a propos of assertions 3, 4, 6, see [14]. 

From now on, unless stated otherwise, we shall assume conditions A, B, 

C to be satisfied, although some of the assertions proved hold under 

weaker restrictions. 

2. Properties of strong solutions 

1. Baste assertions 

The main result of this section is: 

Theorem 1. Let conditions A, B, C (§1.6) be satisfied. Then a solution of 

Eq. (1) is strong if and only if it is pathwise unique. 

In other words, for given coefficients b(t, x), o(t,x) we have the 

following 

Alternative. Either any solution of Eq. (1) given on any probability 

space is strong and pathwise unique, or no solution on any probability 

space is strong, and moreover these solutions are not necessarily pathwise 

unique. 

We note that the existence of a weak solution and its weak uniqueness 

are ensured by conditions A, B, and C. 

The following corollaries of Theorem | are actually the theorem itself 

in a more complete form. 

Corollary 1. Let Eq. (1) have a strong solution on some probability 

space. Then: 

(a) any weak solution of Eq. (1) is strong; 

(b) on any probability space two strong solutions of Eq. (1) coincide 
for all ¢ with probability 1. 

Corollary 2. Let Eq. (1) have a weak solution and let it be pathwise 

unique. Then all solutions of Eq. (1) are strong. 

Corollary 3. If on some probability space Eq. (1) has two solutions (not 
coinciding for all ¢ with probability 1), then Eq. (1) has no strong solution 

on any probability space.
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We note that Corollary 3 follows trivially from Corollaries 1 and 2. 

Hence we need only prove Corollaries 1 and 2. 

(In 5 we shall formulate and prove a criterion for the existence of a 

strong solution.) 

2. Proof of Corollary 1(b) 

1. Denote by M the set of bounded nonrandom (Lebesgue) measura- 

ble functions m(t) on [0,7], m:[0,7]—R". Let 

= t 1 fe pimmexp{ 3 (fms) a3 [nite a. (19) 
We assert that the class of random variables { p(m): mEM} is funda- 

mental in the Hilbert space H,° [0, T J. 

Lemma 2.1. If €H,” [0,7], and if for every mEM 

MEpr(m)=0, 

then £=0 (a.s.). 

Proof. This assertion is proved while proving Theorem 5.5 [16]. 

2. On the interval [0,¢] we consider the equation 

LOu(s,x)+Ulo(s,x)m(s)=0, s&[0,t] 

u(t, x)= (x), (20) 

Lemma 2.2. Let the coefficients of the operator L“” satisfy conditions A, 

B, C (§2.6), mEM. And let p(x) be a slowly increasing function, y€ We 

pant. Finally, let x, be a (weak) solution of Eq. (1). Then 

Mp,(m)(x,)=u(0, x). (21) 

Proof. Let »,=p,(m)u(t, x,). If_y, were a martingale, the relation 

Mp,(m)p(x,)=Mp,(m )u(t, x.) =Mpo(m)u(0, xo) =u(0, x) 

would be satisfied, which is to be proved. We shall prove that », is indeed 

a martingale. To this end we apply the It6 formula to y, (see §1.6.4): since 

dp,(m)=p,(m) >) m,(t) dw{”, 
k=1 

we have 

dy, =p,(m)| LOu(t,x,) dt+ulo dw, | +u(t, x,)p,(m) > m, dw{*? 
k=l 

+ p,(m)u(t,x,)o(t, x,)m(t) dt 

=[-] dw, +p,(m) {PP u(t, x,) ul (t, x,)o(t, x,)m(t)} ae.
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Note that by Eq. (20) the coefficient of dt is zero, which was to be 
proved. 

3. We proceed to prove Corollary I(b). Let g(x) =x in Eq. (20) and 
let x/, x;’ be two solutions of Eq. (1). By Lemma 2.2 we have 

Mp,(m)x; =u(0,x)=Mp,(m)x;/’. (22) 

If x; and x/’ are F“-measurable, i.e., lie in H,” [0, ¢], by Lemma 2.1 it will 

follow from Eq. (22) that x/ =x/’(a.s.). 

It remains only to obtain from 

ViesT = P{xi =x/}=1 

that 

p{ mip sr —x;|=0} =1, 

which can be proved in the usual way. 

4. Remark. We wish to expand on exactly what we have proved. 

For the given set {2, F, P; F,, w,} let there exist several solutions of Eq. 
(1); among them there may be both strong solutions and weak (i.e., 

F,“-measurable and non-measurable) solutions. We have proved that 

there can be no more than one strong solution. However, we have not 

ruled out the possibility that besides this strong solution there may exist 

several other weak solutions differing from the strong solution as well as 

from each other. We shall disprove this possibility in (3). 

3. Proof of Corollary 1 (a) 

1. Lemma 3.1. Let a sequence €,, n=1,2,... of elements in H,” 

[0,¢] and an element EH," [0,¢] be bounded in norm by a common 

constant (i.e., M|é,|? <K Wn, and M|é|? <K), and for all mEM let 

Mp,(m)&, —>Mp,(m)&. (23) 

Then £, >€ weakly in H,° [0, ¢]. 

Proof. Let €, be a subsequence not converging weakly to §; since the 

sequence &,, is bounded, it has a weakly convergent subsequence (we may 

assume that this subsequence coincides with the sequence §,, ); i.e., ,, 

weakly in H,” [0,t], {#&. By the definition of weak convergence, 

Mp,(m)é,, >Mp,(m)§ WmEM, which leads us, if we use Eq. (23), to 

Mp,(m)E=Mp,(m)f Wm EM. Therefore, by Lemma 2.1, = (a.s.).
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2. The next lemma is of interest in itself. 

Lemma 3,2. Suppose we are given a sequence of functions 6"(t, x), 
o"(t, x), n=1,2,... such that: 

(a) for each n, b6"(t, x) and o"(t, x) satisfy conditions A, B, C (§1.6), 

the constants C and p being independent of n; 

(B) for each n, b"(t, x) and o"(t, x) satisfy a Lipschitz condition in x; 

(y) as noo, b"(t, x)>b(t, x), 0"(t, x) a(t, x) for almost all (¢, x). 

Let x, be a strong solution of Eq. (1). Denote by x/ a solution of the 
equation 

xpaxt ['6"(s, x2) ds+ [0% s, x?) de 

given on the same probability space {2, F, P} with the same Wiener 

process w, as the process x,.° 
We assert that x/’—>x, in the mean-square, uniformly in t€[0, 7]. 

Remark. The converse is trivial: if x/—x, in the mean-square, x, is 

F,“-measurable, being the limit of the sequence of F;“-measurable ran- 

dom variables x’. 

3. Proor or LEMMA 3.2. 

(a) Denote by u"(s, x) the solution of the equation 

{Era se2) 4 die"(sra)ms)=0, se[0, ¢] 

u(t,x)=(x). 

It is well known from the theory of differential equations (see 
[15]) that 

u"(s,x)—u(s,x), (24) 

where u(s, x) is a solution of Eq. (20). 

(b) By Lemma 2.2, it follows from Eq. (24) that 

Mp,(m ) p(x; )>Mp,(m)p(x,). (25) 

(c) Setting p(x)=x in formula (25), we find that for any mE M 

Mp,( m )x? >Mp,(m )x;. (26) 

Adding to the above the estimate 

M\|x?|? <k Wn, M|x,|? <k 

(which easily follows from the boundedness of the coefficients of 

6", b,0",0), we find, by Lemma 3.1, that x? x, weakly in H;°[0, ¢] ’. 

®It is always possible to construct such an x/, since 6"(t, x) and 0"(t, x) are Lipschitz (see 

(6}). 
7Here we essentially use the assumption that x, €,"(0, ¢], i.e., that x, is a strong solution.
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(d) We now show that the convergence x/'—>x, is actually strong. To 

this end it suffices to show that the norms of x! converge to the 

norm of x,; i.e., that M|x!|*?—>M|x,|*, which is a particular case 
of formula (25) for o(x)=|x|*, m(t)=0 (then p,(m)=1). Uni- 

formity in ¢ on each finite interval of time follows from the similar 

uniformity in formula (24). 

We have thus proved Lemma 3.2. 

4. We shall next prove Corollary 1.(a); however, we do it here only 

for continuous o(¢, x). Under the weaker requirement that a(t, x) be 

continuous, a similar assertion follows from Theorem 2 (see Remark at 

the end of (5)). 

Let (x,,w,) be a strong solution of Eq. (1). Let (x,,#,) be another 

solution of Eq. (1) (possibly given on a different probability space). We 

need to show that the process ¥, is measurable with respect to F". 

(a) Let y, =M{x,|F}; we need to show that y, =, (a.s.). By Jensen’s 

inequality we have 

[M{2,1 FR}? <M{|z,)7/F 7}. 

Taking the mathematical expectation on both sides of this 

inequality, we get M|y,|* <M|x,|*. As is well known, equality is 
attainable only in case Y=x, (a.s.). Hence it suffices to show that 

M|¥,|?=M1|3,|2 
(b) We now take a sequence of functions 6"(t, x) o"(t, x), which are 

smooth in x and such that the assumptions of Lemma 3.2 can be 

satisfied for them. Further, we construct the processes x}, x) as 

solutions of the equations 

dx" =b"(t,x") dt+o"(t, x") dw,,x2 =x, 

dxf =b"(t, x?) dt+o"(t, x?) d&,, x9 =x, 

respectively. Note that: 

1. The processes x/ and x? are strong solutions of the correspond- 

ing equations (since the coefficients of 6"(t,x) and o"(t, x) 

satisfy a Lipschitz condition in x). 

The processes x converge to x, in the mean-square since x, is 

a strong solution (the convergence follows from Lemma 3.2). 

3. The processes x, and x, and, for any n, the processes x? and x’, 

have the same finite-dimensional distributions (this follows 

from Assertion 1, §6.1); moreover, for any n the n-vectors 
1 n Roent-tgad «") and (%;,...,%”) have the same finite-dimensional 

nN
 

distributions.
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(c) By Eq. (26), 

Mp,(m)x?f—>Mp,(m)x,. 

Since the random variables z/, %,, p,(m)® have the same distribu- 

tions, we get Mp,(m)x" >Mp,(m),. ; 

Taking the conditional mathematical expectation M{ -| F,"}, we 

have 

MP,(m)x? >Mp,(m)¥,; (27) 

since y, €H;"[0,¢], according to Lemma 3.1 the weak conver- 

gence x;y, follows from Eq. (27). 

(d) By the Banach-Saks theorem (see [1]) it is possible to derive from 

the sequence x? a subsequence (which, we assume, coincides with 

the sequence x?) whose arithmetic means converge to y, strongly. 

Then 

M |i +--+ x? |? M|xjte++ x? |? 
M|\y,|? = lim wa eT | = lim Aas se BT : | 

n—>oo n n—»0o n 

=M|x,|?=M|z,|?, QO.E.D. 

4. Proof of Corollary 2 (Yamada, Watanabe | 24] ) 

1. Lemma 4.1. Let a pair of processes {(x,, w,), &,} be a solution of 

Eq. (1). And let a pair of continuous processes (X,,w,) have the same 

finite-dimensional distributions as the processes (x,, w,). Then 

{(%,, ®,), F*} also yield a solution of Eq. (1). 

Proof. Since the distributions coincide, we have 

2 

M(# ~x— f'6¢s,% pa [ol sy di, —x> [0(s,%,)d5— f0(5,¥,) 
2 

=M(x,-x- f'b(s,x,) — f' dw; ) =0, 28 x, —x— [b(s,x,) ds— '0(s, x,) ae (28) 

yielding 

Haat f(s, 8) d+ ['0(s,%,) da, Q.E.D. 

2. The preceding argument is not quite valid. In fact, Eq. (28) 
contains a stochastic integral with respect to the Wiener process w,. A 
necessary condition for this stochastic integral to be correctly defined is 
that the integrand be independent of the future of &,. 

Lemma 4.2. Let BEF*. Then p{B| F2} =p{B| F*}. 

®To get p,(m) we need to substitute w, for w, in Eq. (19). 
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Proof. It suffices to take the event B to be B= {w: X, S0y,.065 4, S 

c},¢,...,¢, Stand to show that the latter does not depend on an event A 

of the form 

~ 
~ 

A={w:w, —w,, <d,,... Wy Kd} tS uy)... Une eT. 

This independence follows from the independence of the events A and 

B constructed in the same way as the events A and B but now for the 

processes x,, w 

3. The definition of strong uniqueness given in §1.3.4 can be interpre- 

ted as follows: for a fixed trajectory wi of the Wiener process w, the 

random variables xj and x,’ in the plane of the variables (x’, x”) are 

distributed on the diagonal x’=x”. Our next objective is to show that this 

distribution is in fact concentrated at a single point; i.e., for a fixed 

Wiener trajectory the random variables x/’ and x; are no longer random 

and can be expressed in terms of a functional of this trajectory. 

Let Cio, 7) be the space of continuous functions mapping [0, 7’] into R”. 

Let fet ear and (x,’, w,;’) be two solutions of Eq. (1). Denote by P’ and 

P” the pertinent measures in (Cio, 7) X Cio, nr By XBr). By [13] there 

exist regular conditional distributions P’(-|w’) and P’”(-|w ). 
We now consider a probability space {2, F, P} for which 

(a) Q=Cio, 7} X Cio, 7} X Cio, 7); 

write the elements wEQ as w=(x’,x”,w), where x’, x”, w are 

continuous functions on [0,7] with values in R”; 

(b) F=B,XB,XBz; 

(c) the measure P is: 

P( dx’ dx" dw) =P’ (dx'|w)P”( dx” |w)W( dw), 

where W is a Wiener measure on Cio, 7}. 

= F(w)) 

4 

    Vv 

Figure |
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We define the random processes x/(w)=x'(t), x//(w)=x"(t), ww) = 
” w(t). Then, by Lemma 4.1, the pair of processes (x;/,w,) and (x,’, w,) 

satisfy Eq. (1). 

4. We proceed to prove Corollary 2. 

(a) 

(b) 

(c) 

Proof. We have constructed the probability space {2, F, P} and 

two solutions (x/,w,) and (x,’,w,) of Eq. (1) having the same 

Wiener process w,, x9 =xg =x. Hence, by our assumption on the 

strong uniqueness of solution of Eq. (1), we have: 

P(WtE[0,T] xi =x/}=1, (29) 

which implies that each of the conditional measures P’(-|w) and 

P”(-|w) is almost surely concentrated at a single point. 

Fix ¢€(0,7] and w=wy €Cjo7). Then the measure Q7; on 
R" X R" induced by the pair (x/, x/’) has the following properties: 

1) The measure Q, is concentrated on the hyperplane {x’=x”} 
(i.e., Q,{x’=x”}=1; this follows from Eq. (29)); 

2) The measure Q, is the product of two measures: Q,=P/P,”, 

where P/ and P,” are measures induced by the processes x; 

and x,’, respectively (this follows from the construction of 

{Q, F, P} and the fact that we have fixed w( ). 

We have (we omit the subscript ¢): 

O=m k’— x" dQ= f |x’—x"|? dP’ dP” 

R" XR" R" xR" 

=f ( ie =e” *ap") ap’ (30) 

R"\2R" 

where for the inner integral: 

C m2 ” 72 wy2 ‘ ” ” a —x" | d. =f le + |x” |" —2(x’, x )| ap 

= x’? + M|x”|?—2(x’, Mx") >|x’[? + [Ate |? —2(x’, Mx”) = [x’—z]°, 

where x= Mx” is a nonrandom vector on R”. 

Continuing the chain of equalities (30), we get 

o>f |x’ —x|" dP’ >0, 
R" 

or, 

f |x’ —x|’ dP’ =0, 
R’ 

yielding x’=xP’(a.s.). We can argue in a similar way for x”.
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(d) Thus for (almost) any wECio 7; there is xR" such that with 

probability | x, =x, x,. =x. In other words, there exists a mapping 

Fi: Cio.) >R" such that if x, is a solution of Eq. (1), then x, = 

F(wé) (a.s.). It remains to prove that the mapping F, is F/”- 

measurable. But by the definition of regular conditional probabil- 

ity and by Lemma 4.2, for any Borel set CR" the function 

f(w)=P{x, €T|w} is F”-measurable; at the same time, this func- 
tion is given by 

1, ifK(w)er 
P{x, ET lw) = 

me ER ey eh if E(w). 

Therefore, 

{wECio,7): F(w)ér} ={w: f(w)=1}EF”, Q.E.D. 

We have thus proved Corollary 2 and thereby Theorem 1. 

5. Corollary 2’. If for some set {2,F,P; w,,F"} there exists a 
strong solution x, of Eq. (1), then there exists a strong solution x, for any 

set {Q, F, P, w,, F”}. 
EP* 

Proof. Let %,=F (ia). A pair of processes (%,,,) obviously generates 

the same measure as (x,,w,) in Cig 7) X Cio 7). It remains only to use 

Lemma 4.1 and Corollary 1.a. 

Corollary 2”. Pathwise uniqueness implies uniqueness in measure. 

Proof. The proof is obvious, due to the representation x, = F;(w). 

5. Cntenra for existence of strong solutions 

1. The arguments in §2.5 are based on investigating more closely the 

structure of the Hilbert space H;°[0, 7] introduced in §2.2. For the sake 

of simplicity we confine ourselves to considering the one-dimensional case, 

although all the arguments can be repeated for the multivariate case. 

We have already noted (see Lemma 2.1) that the random variables 

P™, m€M, form a fundamental set in H,"[0, 7]. Using these vectors we 

can construct an orthonormal basis in H,"[0, 7] as follows: 

In the Hilbert space L,[0,7'] choose an orthonormal basis {m,(t)} 

consisting of uniformly bounded functions (in particular, all m,(t)E&M). 

Let 2™(z,, Zo,...), where 
we « 

SS 2 <Cc wm, > le) <C<0co. (31) 
k=] k=l 

Then the function 

m(t)= D> z,m,(t)EL,[0, T] AM. 
k=) 

And let p;(m)=p,7(z).
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For a set of indices /=(7,,...,¢,), where the 7, are nonnegative integers, 

we write |J|=i, +++: +2,, 

gil 

7 Ozi!... dz 

(if 7=(0,...,0), D/ is the identity operator’). Next consider the vectors 

from H,°[0, 7] defined by the formula 

«1 g; Vii DiCor{2))| 

2. Lemma 5.2. The set of random variables €, forms an orthonormal 

basis in the space H°[0, 7]. 

Proof. 

(a) Orthonormality. Let I=(t,,.--5%,), J=(Jis-++» Jn)» We have 

  
Mag 2M( htt) ere) 

gaz" =0 

= ae ay Mento br(2")Pr(2”)))lpnermo 

7 4 a ! DE Mpr(2')Pr(2”))|pmer no 

map Fe +2"e")| (32) 

(Here 2’z” = 37 ,2,2,; the verification of the equality 
P,(2')P7(z”)=P7r(2'+2z")e** is trivial.) 

Remark. While going from the second row to the third in the 

chain (32) we interchanged the order of differentiation and 

mathematical expectation. This is legitimate if the derivatives are 

integrable (over w) uniformly in z’, z”, which can be fulfilled if 

each z’, z,” is bounded in advance by a fixed number, which is 

guaranteed by condition (31). 

Recalling that 

Mpr(=)=Mpr| a zam()] =Mp;(m)=1 
k=l 

°We shall not distinguish here between the two sets of indices T=(2,,...,%,) and 
T= (sis-+so dm) mon, if, =), fork <n, 7, =0 for k>n.
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if only m(t)=Zf_,z,m,(t) EM, we proceed as follows: 

1 1 
ME,é,=—— —— DED | pase mo 

VI! VJ! 

1] 1 a gia tye 
  

= (PP) | rey 

VI! VJ! bat (824)'*(82K 

= |] 4,,,, Q.E.D. 
k=l 

(b) Totality. Let nEH,"[0, 7], and Mngé, =0 for all J. We shall show 

that 7=0 (a.s.). 

Since p;(2j.,z,m,) is an analytic function of the variables 

2Z,,---) Z,, expanding this function as a Taylor series in z we have 

n oo DM poses t,) r( 5 zum) = Ss Dee tor( Seam) 
k=1 

1g! tplexeiliet 
Rggeuny 1,=0 

= Paes 
= > §u, geiesg 1,) 

Byssxag 1, =0 t,!. t,! 

Therefore 

a = Behan 
Mnpr| Damjl= > ——— 53 O- 

k=l tyeete @O Varta! 

It is easy to derive from this that Mnp;(m)=0 for all mE 

L,[0,7]QM. By Lemma 2.1 we finally get 7=0 a.s., thus proving 

the lemma. 

3. As a corollary we have the following expansion: if 7 &H,"[0, 7], 

then 

1 
y= BEr(0,81)= Ze Ma—— Dibr(=)leno 

aye . “2 Ti Di Mnpr(z))|, 2087: (33) 

If 7 is F“’-measurable, because of the martingale property of p,(z) we 

may replace Mnp,;(z) by Mnp,(z) in the right-hand side of Eq. (33). 

Furthermore, if 7=7(w) is an arbitrary random variable, a similar 

equality holds for M{n|F,;"}: 

M(n|F“} => — 
I! 

  £,D/(M(M{n|F’}p:(z)))|,20 

=> pd Mnp(2))|,ao8: (34) 
Vi! 

(convergence of all the series is in the mean-square). By Parseval’s
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theorem we get 

MI M(nlEY) P= 3S 7 [ Di Mae(2)) |   (35) z=0 

Finally we put n= 9(x,), in (34), (35), where x, is an arbitrary (weak) 
solution of Eq. (1). 

We denote by u(s,x,z) a solution of Eq. (20) in which m(s)= 

pe 124, (5). 
Using Lemma 2.2, we put 

Mnp,(z)=Mo(x,)p.(m) =u(0, x, z), 

yielding 

M[ M{o(x JIE} "= 71 Diu(0.x,2)]" (36) z=0° 

4. Now we have everything ready for us to formulate a necessary and 
sufficient condition for a strong solution of Eq. (1) to exist. 

Theorem 2. Let 0<s<t<7,xER’, BP By wy Sggoex ds 

Let u(s, x, z) and v(s, x) be solutions of the equations 

L*u(s,x)+ula(s,x)m(s)=0, where m(s)= SD z,m,, (37) 
1 

“(t,x mx. 

(x,) = L“v(s,x)=0, (38) 

v(t,x)=x?, 

respectively. And let u(0, x, z)=u(x, z), v(0, x) =v(x). 

Eq. (1) has a strong solution for ¢< 7 if and only if the identity 

1 (x)= 2 pl Diu(s,2))'| (39) 

holds. 

Remark. Although the foregoing necessary and sufficient condition is 

hard to verify, it has the advantage of being formulated in terms of the 

operator L‘*) and Eqs. (37), (38). Thus the presence of a strong solution 

depends only on the coefficients b(t, x) and o(t, x) and is not connected 

with an appropriate or inappropriate choice of o-algebras, probability 

spaces, etc. 

5. Proor or THEOREM 2. 

(a) Setting g(x)=x in Eq. (36) we get 

1 
Ti (40) M[M(x,|F”)])°= > 

I 

[ Dlu(x,z)]° 

  

z=0°
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(b) Necessity. If x, is a strong solution of Eq. (1), in the left-hand side of 

Eq. (40) we have M{x,|F”}=x, and Mx?=v(x), which thus 
yields Eq. (39). 

(c) Sufficiency. Let Eq. (39) be satisfied. Since the right-hand sides in 
Eq. (39) and Eq. (40) coincide, their left-hand sides will coincide 

as well; i.e., 

wy 72 Mx? =0(x)=M[ M(x] F°}] 
Then we have (as in 3.4(a)) x, =M{x,|F"}. Q.E.D. 

6. Remark. This provides one more proof of Corollary 1.a (see 1). In 

fact, let Eq. (1) have a strong solution on some probability space. Then 

Eq. (39) is satisfied by this solution. Due to uniqueness in measure, 

Eq. (39) will also hold for any other solution. This means that this new 

solution is also strong. 

3. Theorems on existence and uniqueness 

/. Basic assertions. In this section we prove the following theorem on 

existence and uniqueness of strong solutions. 

Theorem 3. Let the coefficients b(t, x) and o(t, x) of Eq. (1) satisfy 

assumptions A, B, C (§1.6). Then the following conditions are sufficient 

for a strong solution to exist and to be pathwise unique. 

1) The n-dimensional case: diffusion satisfies a Lipschitz condition in 

x. In addition both coefficients satisfy the Dini condition: 

|o(t, x2) —a(t, x1)| <Alxq—x]| (41) 

[rOuc<er, (42) 
0 Tr 

where p(7) is the modulus of continuity of the functions 6(¢, x), 

o(t, x) (with respect to a pair of arguments). 

2) The one-dimensional case: diffusion satisfies a Holder condition 
° 1 

with exponent a2 3: 

Jo(t,x2)—o(t,x)|<Alxg—x)", a>} (43) 

and has bounded measurable drift. 

3) The one-dimensional case, with b(t, x)=6(x), o(t, x)=o(x): the 

diffusion coefficient has constant sign and has bounded variation 
on each finite interval 

o(x)>p>0 (44) 

var.;_n,nj9(x) = sup D lo (x441) -9(x,%)|< 00 (45) 
—Nexy<-+) <x, =N 

with bounded measurable drift.
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Remark. 

a) By Theorem 1, we need only prove either the existence of a strong 

solution or the pathwise uniqueness of a (weak) solution. We prefer 

proving pathwise uniqueness. 

b) Obviously it suffices to prove pathwise uniqueness for an arbi- 

trarily small interval [0, e]. Moreover, in that case we may replace 

in Eqs. (1) and (2) the initial condition x95 =x by x9 =§, where € is 

a random variable. Splitting a long interval [0, 7] into small parts, 

we get uniqueness on the entire interval [0,7']. In the future we 

assume 7'>0 to be sufficiently small (although this will be neces- 

sary only in §2). 

2. A dnft-eliminating transformation 

1. Lemma. 2.1 Let d(t, x), o(t, x) satisfy conditions A, B, C (§1.6), 

let T>0 be sufficiently small, and let the function u: [0,7] R" >R" be a 
solution of the equation 

C“Ou(t,x)=0 re [0,7] 

u(7T,x)=x. (46) 

Then the function u(t, x) has the following properties. 

1) For any fixed t€[0, 7] the function u(t, x)=u,(x) is a one-to-one 

mapping u,: R">R" onto R’. 

We denote the inverse of u,(x) by v,(_y)=v(t, y). 

2) The functions u(t, x) and v(t, ») belong to Ww, for all p< 00; in 

particular, the derivatives u) and v, satisfy a Holder condition 
(with respect to ¢ and x) with exponent a <1. 

3) The derivatives u/(t,x) and u,(t, y) are bounded. Hence, the 

mappings u(t, x) and v(t, ») are quasi-isometric for each ¢: there is 

a constant m>0 such that 

a Ulta) =u ha) J2-)1 at 

[xo —x,| [v(t, y2)—v(t, »,)| ™ 
  

2. The detailed proof of Lemma 2.1 and an investigation of the 
properties of the mappings u(t, x), v(t, y) can be found in [24]. Here we 

outline only the basic steps in the proof. 

(a) From the theory of parabolic differential equations (see [15] for 

instance), it follows that a solution of Eq. (46) exists, is unique and 

belongs to W,'* for any p<. 
(b) From embedding theorems (for instance, see [15], Lemma II.3.3) 

it follows that if u€ ne for p >n+ 2, all the derivatives (du, /dx,) 

(t, x) satisfy a Holder condition with respect to ¢ and x. In that
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(c) 

(d) 

(e) 

(f) 

(g) 

case we can choose any Holder exponent in the range 
+ 

ieee)   ; Since p can be arbitrarily large, we can choose 

a as close to 1 as desired; the Holder constant k for the domain 

[0,7] xD (here the region D is bounded) is to be estimated in 

terms of the norm of the function g(x)=.x in the space Ww, (E), 

where E is a specially constructed sphere, DC E. However, due to 

the linearity of the operator L“" the constant k should not change 

if we add an arbitrary constant to g(x), or, equivalently, if we 

move the sphere E to the coordinate origin. 

Therefore, the derivatives (du;/0x,) (t,x) satisfy a Hdlder 
condition with respect to ¢ uniformly in x. 

Note that for t= 7 

du, _ 0q, _ \ i=) ; 

Fe (Ta)= Bea) ={ 9) he 

i.e., |ui(T, x)|=1. Hence it follows from the Holder property of 
the derivatives that for all t€©[0,7'] we have the estimate 

|u’(t, x)| <constant. (47) 

Note that for ‘=7, 

det u/ (7, x)=det g'(x)=1, 

and det u’(t, x) satisfies a Holder condition with respect to ¢ since 

it has been obtained by multiplication and addition operations 

from functions satisfying a Holder condition. Hence if 7 is suffi- 

ciently small we have the estimate 

det’u’’ (t,x) > const >0. (48) 

The estimates (47) and (48) imply the estimate 

|A min(¢, x )| > const > 0, (49) 

where A;,,(¢, x) is an eigenvalue of minimum value of the matrix 

u’(t, x); this yields 

\u(t,x2)—u(t, x,)| > const|x2 —x,|. (50) 

Condition (50), as is shown in [9] (Corollary of Theorem II), is 

sufficient for the global invertibility of the mapping u,(x). We 

note that this fact is not trivial for dimension n> 1. In particular, 

one inequality (48) is in general not sufficient for global invert- 

ibility of u,(x), although it is sufficient for local invertibility. 

Assertion 1 of the lemma has been proved. Assertion 3 follows 

from the estimates (47), (50). It remains only to prove that the 

inverse function u(t, y) belongs to wee. We can prove this by 

taking the limit of the smooth functions u,(¢, x) and their inverses 

v,(t, y). The lemma is proved.
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= u(x) Bs 

Figure 2 

3. The mappings u(t, x) and v(t, y) constructed have a very useful 

property. Consider two processes x, and y, that can be obtained from each 

other according to the formula 

y, =u(t, x,), 

x, =u(t, y,). (51) 
Let x, satisfy the equation 

oe alateiianes (52) 
Xo =€. 

By the Itd formula (see §1, assertion 6.4) we then have 

dy, =2 u(t, x,) dt+ul(t, x,)-a(t, x,) dw,. 

But 2u(t, x)=0 by construction. Hence 

dy, =u‘(t,x,)-o(t, x,) dw,. 

To convert the last equality into an equation for y, we replace x, by 
v(t, y,). We then find that y, satisfies the equation 

dy, =5(t, y,) dw, 53 ee (3) 
where {=u(0, €); the matrix s(t, y) is seen to be 

s(t, y)=uy(t, v(t, »))-o(t, v(t, »)). (54) 

We can formulate now a trivial lemma which essentially simplifies the 

proof of Theorem 3. 

Lemma 2.3. A solution of Eq. (52) is pathwise unique if and only if Eq. 
(53) has a pathwise unique solution. 

Proof. The proof is obvious. 

4. Lemma 2.4 The matrix s(t, ») given by formula (54) satisfies 
conditions A, B, C (§1.6).
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Proof. 

(a) Continuity of the matrix s-s*=u’-o-0*-(u))*=u-a-(u,)* fol- 

lows from the continuity of the function v(t, y) with respect to 

(t, y) and the continuity of the matrices a(t, x), u(t, x), (u,)*(t, x) 

with respect to (¢, x). 

(b) Uniform positive definiteness of the matrix s-s* follows from the 

uniform positive definiteness of the matrix a(t, x) and the uniform 

nonsingularity of the matrix u’(¢, x). 

(c) Boundedness of the matrix s(t, ») follows from the boundedness of 

the matrices o(t, x) and u/(t, x). 

3. Proof of the first assertion of Theorem 3 

1. Lemma 3.1. If 5(t, x) and o(t, x) satisfy Eqs. (42) and (41), the 

matrix s(t, y) given by formula (54) satisfies a Lipschitz condition with 

respect to y. 

Proof. As is shown in [8], if 6(¢, x) and o(¢, x) satisfy the Dini condition 

(42), then the second derivative u’’ (t,x) is bounded. Therefore u’(t, x) 

satisfies a Lipschitz condition with respect to x, and the product 

u'(t,x)-o(t,x) satisfies a Lipschitz condition with respect to x (since 

o(t, x) satisfies (41)). If we substitute x for x=v(t, »), we find that s(t, y) 

is Lipschitz with respect to y because u(t, y) is Lipschitz with respect to y 

(see Assertion 3 of Lemma 2.1). 

2. The validity of the first assertion of Theorem 3 follows in an 

obvious manner from the Ito theorem on uniqueness [6] and from Lemma 

2:35 

4. Proof of the second assertion of Theorem 3 

1. Lemma 4.1 If x€R' and o(t, x) satisfies condition (43), s(t, ») 

satisfies a Holder condition with respect to », with the same exponent a. 

Proof. The proof follows trivially from (43) and the second assertion of 

Lemma 3, if we recall that a product of two functions satisfying the 

Holder condition with exponents a,, a, respectively, satisfies the Holder 

condition with exponent a=min{q,, a}. 

2. Lemma 4.2. (Yamada, Watanabe [24]). Let the coefficient 

s(t, y) in Eq. (53) satisfy the condition 

Is(¢, 2) — s(t, 11 Se(L 2-1), (55)
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where p(r) is a nonnegative increasing function such that 

« 1 
dr= 00. (56) 

J p*(r) 

Then a solution of Eq. (53) is pathwise unique. 

  

Remark. The functions p(r)=c-|r|*, a> 5, the functions c Vln r| ‘ 

c- Vr|Inr|-|In|Inr|| , etc. satisfy condition (56). But the functions c:|r|?*5, 

cVyr|in r|'*8 ‘ cVr{ln r|-|In|In r||'** , etc., do not satisfy condition (56). 
  

3. Proof of Lemma 4.2 

(a) Let ay =1, a, 10, 

  

then 

  fr dr=2. 
a, kp*(r) 

We construct the functions g,(r) in the following ways (see 

Figure 3): 

0 forr<a,,r>a,_;, 

between 0 and 2/kp*(r) for a, <r<a,4_y. 
vi=| 

Here g; (7) is continuous, and the shaded region under it is 

equal to | (the region under 2/kp*(r) on an interval [a,,a,_,] is 

equa! to 2). Further, 

0 forr<a,,r>a,_\, 

between O and 1 for a, <r<a,_y. 
nin={ 

Let ,(0)=0. And continue g,(r) to (— 00,0] by making it 

even. It is clear that the functions g,(r) are twice continuously 

differentiable, and g,(r)f|r| since |r| > @,(r) >|r|—a,_}. 

(b) Let »/ and »,” be two solutions of Eq. (53) with the same Wiener 

process w, and the same initial value ¢. Then 

ji a = fo Nn ) =S(t, yy )) dw, . 
0 

By the [to formula, 

' ” t, ’ ” , ” 

Pil i We = [iC —De )[ s(t, 9% y~st, Ve )] dw, 

+ [sei He )| s(t, y, )— s(t, JP a=4, + $,. 
0
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(c) We have 

M$, =0 

t ” , ” ‘ ” Isl <5 [lee ~y/" )|-|s(t, 9/)—s(t, 9(” )I2 at 

2 
<it- max Pi (1 )P*(Ir]) <3 °t- [90 as k>00. 

a, <|r|<a,-; 

We get Mg,( 9; —»,” )-0 as k->00, yielding M| »/ —y//|=0, Q.E.D. 

4. Remark. In proving Lemma 4.2 we never used the nonsingularity 

of s(t, y). Therefore, the assertion of the lemma remains valid for the 

degenerate equations (53). 

5. Proof of the third assertion of Theorem 3 (See [18]) 

1. Remark. Many discontinuous o(x) satisfy conditions (44), (45) of 

the third assertion of Theorem 3. Hence we cannot formally refer to 

either the assertions in §1.6 or Lemma 2.1, §3. Actually, all the assertions 

formulated above remain valid. To convince ourselves that this is so, we 

need, instead of the parabolic operator 

a2 
1g*(x) d 

0 d y, FO(x) a +2 5a?” 
a 

the elliptic operator 

3 a? 
b(x) = +107(x) 

Ox? 

The properties of this elliptic operator do not change if we divide it by 

o*(x); i.e., we go over the operator 

b(x) 98 1 0? 
+ + - 
o*(x) dx 2 Gx? 

In particular, in Lemma 2.1 we may take, instead of a solution of 

Eq. (46), the function 

x y b(z) 
= —? z P 57 u(x) [ie| J als (57) 

) » a*(z) 

which satisfies all the needed properties. 

2. Lemma 5.2. If x&R', a(x) satisfies conditions (44), (45), then 

s( y) is of bounded variation on each finite interval. 

Proof. The proof follows trivially from the remark that u_ in the 

formulas (54), (57) is of bounded variation
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3. Lemma 5.3. Let (&,,v,), ¢€[0,7] be a pair of continuous real 

random processes such that: 

1) 
2) 

3) 

Proof. 

(a) 

(b) 

(c) 

£, is a martingale, £, =0; 
v, is a process with a bounded (in the mean) variation: 

Mvarjo, 7) 2(t,@) <0, (58) 

where var, 7)(t,) is the total variation (in ¢) of the function 

v(t) for fixed w; 

There exist constants C>c>0 such that on the set {(t, w): &,(w) > 

0} the inequality 

c8,(w) <y(w) <CE,(w) (59) 

holds. 

Then &, =0 with probability one for all ¢€[0, 7’]. 

Let n(z,w) be the number of points ¢€[0, 7°] such that v,(w)=z 

(the function n(z,w) has the possible values 0,1,2,...,00). By the 

Banach theorem (see [19]): 

varjo,rj(w)= f_n(2,0) de. (60) 

1 1 
Consider an interval [a, b]= Ce 1,1. Let m(z,w) be the num- 

ber of down-crossings of this interval by the martingale £,. We see 
that 

n(z,w) >m(z,w) (61) 

(since whenever &, =(1/c)z, v, z, and when £, =(1/C)z, v, <z). 

We now estimate from below the mean of m(t, w) for t>0. To this 

end consider the Markov times 

1 =0, 

Tox+1 =inf{t> t,: €, >b} AT 

Tox 42 =inf{t > M441: § <a} AT 

k=0,1,2,... 

We see from Figure 4 that 

> (Se, 7&1.) =m(z,w):(b—a) +, (62) 
kml 

where {=0 or §=(1/c)z—£,. depending on whether the number n 
of the last 1, < 7’ is odd or even. 

Replace ¢ by a larger value: 

{<= §(w) iff; >b orf =0 

b-a iff;<6b,



(d) 

(e) 
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m(z,w)=2 

itn aA fi 
- ZT | 

| | | 
| | 
| | 
| | | 
| | ‘ | 
| | | 
| | d 
| | 

is | | | 
Pr i 1 | | 

Popo t | 
| | | 

= l | —_ 
T =0 T1 = T3 % WJ tT T=% 

Figure 4 

and take the mathematical expectation on both sides of Eq. (62). 

We get 

0 <(b—a)(Mm(z,w)+1)—Mmax{é;—6,0}, 

yielding 

1 
Mmax{£,—6,0} aie Mmax{ &~ =2,0| 

b=a 1 1 

(=~): 
If p{ #0} >0, then p{; >0} >0. Therefore, there is 6 >0 such 
that for all z€(0,5), p{€&,; >(1/c)z} >0; ie., there is €>0 such 

that for all z€(0,5) we have the inequality 

Mm(z,w)> =i}, 

Mmax{ &,~~2,0} Die. 

whence 

Mm(z,0)>7-1, (63) 

where k=(1/c)—(1/C). 

Combining inequalities (58), (60), (61), and (63), we get 
e 00 

00 >Mvarjo,7)v(@)= | Mn(z,w) dz 
oo 

5 of € 
> {°Mm(z,w)d> —1)dz=00. 
J I, ilk
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The resulting contradiction shows that P{§,=0}=1, yielding 

P{Wt< T.&,=0}=1. The lemma is proved. 

4. Lemma 5.4. Let the coefficients s(_) in Eq. (53) satisfy the 

following conditions: 

0<k<s(y)<K, (64) 

var, n,n) 5( 9) <00 (65) 

on any interval [—N,N]. Then the solution of Eq. (53) is pathwise 

unique. 

Proof. 

(a) Let »/ and »,” be two solutions of Eq. (53), with the same Wiener 

process w, and the same initial value ¢. Let 

7=inf{t:| »/|=Nor | y,/|=N}. 

It is clear that when N->0o, t=1(N)-—>00. From now on, in 

order not to complicate the notation we shall write ¢ instead of the 

Markov time ¢t/\t. We consider our problem on the interval 

  

[—N, WV}. 
(b) To apply Lemma 5.3. we need to consider the pair of processes 

&= [sO -s00)] dw, , (66) 
0 

% =h( yy )—h(), (67) 
y | 

where nv)= f de. 
0 s(z) 

We see that € is a martingale, ) =0. Next we estimate the 

variation of the process v,. 

(c) The function A(y) is not twice differentiable. Hence it is not 

possible to apply the Ito formula immediately to the function 

h( y). Consider a sequence of functions s,(_y) such that: 

Sa(¥)—>s(y) in L,[-N,N] 

s,(y)EC'(R) Vn, 

k<s,( 7) <K Vn, 

Ilse ( a )ilep-n,yy S Vary, SC) Vn. 

And let 

y | 
hao)= f ata 

By the Ito formula, 

Ss ¢ hai) = halo) + [ 2? do, — | 252 y,)dt. (68)
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(d) Since h,(_»)—>A(_») as n00 uniformly on [—N, NV], 4,(9,)A(,) 
(a.s.) and h,( 99)—A( Jo) (a.s.). 

Further, 

_ t5(%) _ _ 5(%) 

ale Seeivau =u ( in 0) ) 4 
s(y) | 

5n( ¥) 

(Here the inequality follows from the estimate (16), see §1.6.3. We 

have convergence to zero due to the convergence s,(_y)—s5( y) and 

the boundedness of s,(_y).) Therefore, the stochastic integral in the 

right side of equality (68) converges as n—>0o (in the mean-square; 

because the interval [— N,N] is bounded, it converges almost 

surely) to the Wiener process w,. 

Therefore, the last term in Eq. (68) converges almost surely to 

some process U,. As a result we have for A( ») 

h( 1.) =h( 50) +e, + U,. 

(e) Further, we estimate the variation of U,. We have 

  

1—   0 asn->oo. <A, 
L2{-N,N)       

5a de a<K 
On) 
Sh) .2/ y)   Mvario,7)U, < yu” 

  
1|| “822.205 

          L\(-N,N) 

<K3\l5.(9 ilzy—-w,wy SK3° vary—w, wy S( 9) < 00. 

Therefore, the process 

y, =h( yy )—k( =U —U," 

also has a bounded (in the mean) variation. 

(f) By the inequalities 

1 1 = Sip’ = _ =)" ay)   < 

a
l
 

we have for y. 79: 

1 1 
Zoe i) S482) — 8) 8 7 On i) 

1 1 
Re <u, < Ree 

Then, by Lemma 6.3., P{€, =0} =1, thus completing the proof of Theo- 

rem 3. 

4. Additional results 

In this section we state, though without proof, some additional results that 
strengthen and generalize the results obtained in the preceding sections. 

Not all the results below will be fully justified. Still it is possible to see 

how to go about proving them.
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1. Representation of a strong solution in terms of Ito multiple integrals 

1. It is known (see [7]) that any F”-measurable random variable is 
representable as a series of It6 multiple integrals of nonrandom functions. 

Here we shall write a specific representation for the random variable x,, 
where x, is a strong solution of Eq. (1). 

2. Denote by 7;",p(x) the value of the solution u(s, x) of the equation 

+5 07(s, E+ [6(5, x)+m(s)a(s, wie 0, (69) 

u(t,x)=9(x) 

at the point (s, x). 

For m(s)=0 write 7; p(x). Let us rewrite Eq. (69): 

£0 u(s,x)= —m(s)0(s,x) s4(5,2). (70) 

Recalling how the solution of a nonhomogeneous parabolic equation 

may be expressed in terms of the solution of a homogeneous parabolic 
equation, we have: 

t a Tmo x)=u(s,x)=T, (x) + fT, m(r)-0(r,-)eufr,-\(x)dr. (71) 
Let 

(rsx) 2 u(r, x)=Du(r, 3). 

We shall solve Eq. (71) by an iteration method. We get 

Tr P(x) + eg Tare 9(x)=T,,.9(2) =f Jo. = 
* cD) ania 

We also note that for any bounded nonrandom function A(7,,..., 7,) by 
the Girsanov theorem [4] we find that 

Mpdm) fon fi A(r,...%) div, ... dw, 
* 7, Se 

=Mfo fi . eBUti-+ tn) (dios, +m(r1) dry)... (da, +t) dy) 

Sf ann h(11,-..%)m(1) dr, ...m(%,) dra. 
SS St 

Therefore 

TP (x) =Mp,(m)| 7; 

  

est D fof 
n=] SRT SS 

61, 8.9, 4d (72)
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On the other hand, by Lemma 2.2, §2, 

To" (x) = Mp,(m)-p(x,)=M[ p,(m):-M{ p(x, |F"} J. (73) 
By Lemma 2.1, §2, it follows from Eqs. (72) and (73) that for any 

(strong or weak) solution of Eq. (1) 

M{9(x,)|F"} = To,.(*) 

+d fof 
n= 1 O<rn<oeer, 

To, ,D... DT, p(x) dw,...dw,. (74) 
<t k 

Then, if x, is a strong solution, and if A(x)=x, we have 

x,=T7o A(x) + Ss j~ 
n=] O<r<:-°4, 

Ty,,D... DT, h(x) deo, ....dw,, (75) 
<t 

yielding an “explicit” solution of Eq. (1). 

3. Note that the terms in the right-hand side of formula (74) are 
orthogonal. Hence 

M[ ModE} =[To,eOF+ D ff 
i O<n--- <r, <t 

x[T,,9... DT, p(x) ]° dry... dry. (76) 

This yields a representation for M[M{g(x,)|-°}]? different from that 

in Eq. (36). By the way, it might be possible to prove that the right-hand 

sides coincide in Eq. (36) and Eq. (76) respectively without invoking 

probability theory. 

Eq. (76) implies another criterion for the existence of a strong solution. 

The condition Mx? =M[M{x,|F“}]?, necessary and sufficient for a solu- 

tion x, to be strong, can now be written as: 

To, ,h?(x) =(To,,h(x)) 

+ Eff [ 7,0... DT, A(x) ] dry... dr, 
‘saatt O<rj--- <r<t 

where A(x) =x. 

2. The drift-eliminating transformation. The mutually inverse transfor- 

mations u(t, x) and v(t, y) constructed in §3.2 may appear useful not only 

in constructing strong solutions but in other situations as well. We show in 

what directions it is possible to weaken the restrictions on the coefficients. 

1) Note first that a similar property holds not just for small 7 but for 

any 7'< 0. In that case, though, to estimate the Jacobian det u_ 

from below it does not suffice to invoke the embedding theorem- 

more refined probabilistic methods are needed.
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2) The boundedness of the coefficients 6(t, x) and o(t, x) guarantees 

that the solution u(t, x) of Eq. (46) lies in wi? for all p<oo. 

However, as one sees from the proof of Lemma 2.1, §3, it suffices to 

find a solution in any we with p>n+2. Therefore, we may 

require only that the drift coefficient b(t, x) belong locally to some 

L, with p>n+ 2 (see [15], Theorem IV, 9.1). 

3) It is possible to make only such restrictions on the behavior of the 

coefficients b(t, x) and o(t, x) at infinity that guarantee the “ab- 

sence of explosions” (see [17] and [10] for a criterion for the 

absence of explosions). For example, it suffices to require only that 

the coefficients grow linearly. 

4) Evidently, the invertibility of u(t, x) for each ¢ will hold whenever 

the measure generated by the process x, is equivalent to the 

measure generated by a process with diffusion o(t, x) and zero 

drift. 

We can also make similar changes in Theorem 3. 

3. Conditions for pathwise uniqueness 

1. Let 6(t, x)=0 in Eq. (1). In [24] conditions for strong uniqueness 
are given, formulated in terms of the modulus of continuity of o(¢, x) in x. 

They are: 

Let 

|a(t,x)—a(t, y)| <p(|x—»]), 

where the function p(r) is defined for r€[0, 00), p(0)=0. The following 
conditions suffice for strong uniqueness of a solution of the equation 

pst 
Xo =X: cra) 

a) xER': it is then required that We >0 q 

[ane7= (78) 
0 p*(r) 

The functions p(r)=c Vr; ¢ Vr |Inr|i**; ¢ V rin r| ‘|In|In 7 ||? **, ete. 
satisfy condition (a). If we denote by M, the class of functions satisfying 
condition (a), and by M, the class of functions satisfying the Holder 
condition with indicator a, 0<a<1, then the following inclusions are 
strict 

M:cM,c |) ™,. 
a<3
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The corresponding uniqueness theorem was actually proved in $3, see 

Lemma 2.2, §3. 

(b) x€R*; in this case it is required that the function G(z)= 

2e*/*p*(e'/*) be upward convex and that We >0 

f Onl ymca. (79) 
0 p*(r) 

Examples of functions satisfying the condition in (b) are: p(r)=c7; 

er|lnr|; crflnr| VjIn|inr || ; rfinr| V|Injin || V{Injiniin rl 

(c) x€R*,n>3; in this case it is required that the function p*(r)/r be 

upward convex and that We> 0, 

  [ianere. (80) 
0 p*(r) 

Examples of functions satisfying the conditions in (c) are: p(r)=c; 

eo V{Inr| ; a V{Inr}-[In{Inr}! 

In cases (b) and (c) the following strict inclusions hold: 

M,CM,C () Ma. 
acl 

Here we give no proofs of assertions (b) and (c) because first, they are 

cumbersome, second, they follow in general the proof of Lemma 4.2, §3, 

third, they weaken a Lipschitz condition only “very, very little” (as will 

be shown, they do not weaken the Lipschitz condition enough that we 

can reject the Dini condition in Theorem 3.1 without changing the 

proof). 

2. Conditions (a), (b), (c) are unimprovable (in terms of the modulus 

of continuity), as is illustrated by the following example. 

Example (Yamada, Watanabe |[24]). We consider the case n> 3. Let 

the function p(7) be upward convex, and let 

{ =< dr< 0. 
“0 p*(r) 

Further, let o,,(¢, +)=8,,-p(|x|) (then |o, (¢, »)—9,,(t, x)| <|p(| »])— 

p(|x|)| Se(| 7-1). 
Considering the equation 

dx, =a(x,) dw,, 

(81) 
vo =O, 

we can see that this equation always (for any Wiener process) has the 

solution x, =0. Let us construct one more, nonzero solution of Eq. (81).
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Let (w,, F,) be a Wiener process. Consider the function 

s)=ft,0)= [Gods   

we will show that Mf(t, w)< oo. In fact, 

ai: 1 mu t o 1 1 en 7/2s. nN ay 

BGM®) fata) 4 f(J, p*(r) (Qns)"/? ir) 

Gi.ge't t 1 2 
ak ————_——_-¢7’ as) a 

J Sah (Qar)"/? 52/2 

€ 

<const.(1+ > 

0 p*(r) 

    

  

  ar) <oo. 

Here we have used the fact that for small 7 the integral 

si —r?/2s 

f sn/2° ad 

has the order of 1/r”~?. 

We change the time-scale using the function f(¢,w): consider the 

function g(h)=g(h,w), the inverse of the function f(t, w) for each w: 

g(h)=min{t: f(t)=h}, 

and consider the process x, =w,,,). For this process we have 

1 ' : A Cn ¥2) = Catfeny Wf)? =8,,8(4) =, f e*(Ix,1) ds, 

which can be satisfied because g(0)=0, and 

g(h)= 1/f'(g(h)) = (ply!) = (07 lxal), 

yielding 
; ‘ h 9 
(x, %Z) 5;, 0,;(x,) ds. 

0 

In a similar way we can show that the process #, = fia '(x,) dx, is 

Wiener. Therefore, we have two solutions of Eq. (81): (0,w,) and 

(X4,W,). 

Remark 1. In dimensions n= 1,2, examples can be constructed in the 

same way; the inequality Mf(t,w)< 0c can be obtained when conditions 

(78), (79) are violated. 

Remark 2. In the example constructed above we used essentially the 

singularity of the diffusion coefficient o( x); in Theorem 3 the diffusion is 

nonsingular. However, we do not know how to make use of this nonsingu- 

larity to prove strong uniqueness. 

3. If the drift-coefficient satisfies the Dini condition, the matrix u(t, x), 

as was mentioned, satisfies a Lipschitz condition in x. Hence the continu-
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ity modulus of s(t, y) (see Eq. (54)) changes, compared to the continuity 

modulus of o(¢, x), by no more than a constant number of times. Hence, 

if the drift satisfies the Dini condition, it is possible to replace the 

conditions imposed on the diffusion coefficient in Theorem 3 by condi- 

tions (a), (b), (c) formulated in 3.1. 

In the one-dimensional case, it suffices that u/(¢, x) satisfy the Holder 

condition with exponent a> ;: Hence, instead of measurability and 

boundedness of 4(t, x) we may require that 6(¢, x) be measurable and 

belong locally to L,, where p > 6. If the coefficients do not depend on £, it 

suffices that p> 3. 

It is possible to require that conditions A, B, C be satisfied not in the 

entire space but only in each finite region, with constants probably 

depending on the region—we then have strong uniqueness. 

4. Regretfully, we have not yet succeeded in deleting the Dini condi- 

tion from Theorem 3.1. Indeed, as the examples in [13] show, for n> 2 

even if o(¢, x) is a unit matrix and 4(¢, x) is continuous, u”, may still turn 

out to be unbounded. In that case the unboundedness may be such that 

the new diffusion coefficient s(t, y)=u‘(t, v(t, »)) will have a continuity 

modulus in y, which was prohibited by Example 3.2. 

4. Dnft depending on the past. For the equation 

Beatie (82) 

Xo =x, 

where a(t, xg) is a measurable nonanticipatory bounded functional, we 

formulate two sufficient conditions for strong uniqueness (each condition 

is sufficient): 

1) A functional Lipschitz condition: 

Ja(t, x6) —a(t, 95)| <Allxo — oll, (83) 

where the norm is taken in the space C)o ,). 

2) Delay: there is e >0 such that for all ¢ the random variable a(‘, <5) 

is measurable with respect to the o-algebra /*, (that is, a(t, x$)= 

a(t, x, *)). 
The proof of uniqueness under condition | coincides with the proof of 

the Ito theorem [1]. To prove that a solution is F;“-measurable under 

condition 2 we need to split the interval [0, 7'| into intervals of length e. 

5. Three unsolved problems. In concluding we state three problems 

which have not yet been solved but which seem most interesting. 

Problem 1. Let the diffusion coefficient o(¢,x) be continuous with 
respect to both arguments, bounded, and uniformly nonsingular. ‘The
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problem is to prove that the equation 

{ & =oa(t, x,) dw,, 

Xo =X 
(84) 

has a strong solution. 

Problem 2. Let the drift coefficient 5(t, x) be bounded and measurable. 

The problem is to prove that the equation 

dx, =b(t, x,) dt+dw,, 
Xo =x 

(85) 

has a strong solution.'° 

Problem 3. Let x€R' be one-dimensional. And let a(t, x5) be a mea- 
surable bounded nonanticipatory functional. The problem is to prove that 

the equation 

| dx, =a(t, xi) dt+dw,, 
(86) 

has a strong solution."! 

Remark. 

a) Problem 3 is known as the “innovation problem”. Its solution 

would essentially simplify the proofs of many results in filtering 

theory (see [16]). 

b) Problem 2 follows from Problem 1. In the one-dimensional case 

Problem 2 has been solved (Theorem 3.2). In the multivariate 

case, to solve Problem 2 it would suffice to prove strong uniqueness 

for Eq. (84) with the coefficient o(t,x)€ (-) M,, where M, is the 
a<l 

class of Holder functions in x with exponent a. 

c) Problem 1 has been formulated implicitly in Strook and Varadhan 

[23]. 
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