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PRIMES IN GEOMETRIC SERIES AND FINITE PERMUTATION GROUPS

GARETH A. JONES AND ALEXANDER K. ZVONKIN

Abstract. As a consequence of the classification of finite simple groups, the classification of per-
mutation groups of prime degree is complete, apart from the question of when the natural degree
(qn − 1)/(q − 1) of Ln(q) is prime. We present heuristic arguments and computational evidence to
support a conjecture that for each prime n ≥ 3 there are infinitely many primes of this form, even if
one restricts to prime values of q.

1. Introduction

The study of transitive permutation groups of prime degree goes back to the work of Galois on
polynomials of prime degree. It is sometimes asserted that the groups of prime degree are now
completely known, as a consequence of the classification of finite simple groups. This assertion
is true only if one ignores an apparently difficult number-theoretic problem, namely the existence
or otherwise of infinitely many primes of a particular form. The list of such permutation groups
includes several easily described infinite families, three relatively small sporadic examples, and
one other family which will be the subject of this note.

Let p be a prime, and let q = pe, e ≥ 1, be a prime power. The projective special linear groups
Ln(q) = PSLn(q) and some closely related groups act doubly transitively, with degree

(1) m =
qn − 1
q − 1

= 1 + q + q2 + · · · + qn−1,

on the points or hyperplanes of the projective space Pn−1(Fq) for integers n ≥ 2 and prime powers
q ≥ 2.

Definition 1.1 (Projective prime). If the number m of points and of hyperplanes of the projective
space Pn−1(Fq), defined by (1), is prime, then we call it a projective prime.

Remark 1.2 (n prime). A necessary condition for m in (1) to be prime is the primality of the
exponent n since otherwise the polynomial 1 + t + t2 + · · · + tn−1 would be reducible over Z.

The only projective primes with n = 2 are the Fermat primes m = 22k
+1, while those with q = 2

are the Mersenne primes, of the form m = 2n − 1 with n prime. However, there are many others,
such as m = 13 with n = q = 3. An interesting case is the Mersenne prime

m = 31 = 1 + 2 + 4 + 8 + 16 = 1 + 5 + 25.

Of course, it is an open problem whether there are infinitely many Fermat or Mersenne primes;
at the time of writing, only five Fermat primes (with k = 0, . . . , 4) and 51 Mersenne primes are

2010 Mathematics Subject Classification. 11A41, 11N05, 11N32, 20B05, 20B25.
Key words and phrases. Permutation group, prime degree, projective space, Bunyakovsky conjecture, Goor-

maghtigh conjecture.
1



2 GARETH A. JONES AND ALEXANDER K. ZVONKIN

known to exist. More generally, the existence of infinitely many projective primes seems to be an
open problem.

As in the case of Mersenne primes, there is plausible heuristic evidence, given in Section 4,
to support a conjecture that there are infinitely many projective primes. Indeed, there is much
stronger computational support for this, even in restricted cases such as when n = 3 and q is prime
(see Section 6). Our aim in this note is to put forward such evidence, in the hope of inspiring
specialists in number theory to address this problem. Thus, we formulate the following

Conjecture 1.3 (Projective primes). There are infinitely many projective primes.

Remark 1.4 (Addition of primes). More than once, some mathematicians (and physicists), among
them very eminent ones, have expressed the opinion that the two famous Goldbach conjectures are
completely devoid of interest since they concern the addition of primes whereas primes are created
to be multiplied, not added. Our note may be considered as a strong case for the interest, in certain
contexts, of the addition of primes and of numbers related to them (such as prime powers). By the
way, one of the Goldbach conjectures has already been proved by Harald Helfgott [28].

Notation 1.5 (Primes). Notation for primes depends on the context. We follow the tradition of
denoting a prime number by the letter p when this number is treated alone. If, however, there are
more than one prime number involved, as is the case, for example, in formula (1), then one of these
numbers may be denoted by m or by some other letter.

2. Transitive permutation groups of prime degree

This section summarises the background in finite permutation groups from which the problem
stated in the Introduction arises. Any reader who is interested only in the problem itself can safely
omit this section. For more details on permutation groups of prime degree, see [13, §3.5] or [30,
§V.21].

An elementary but important fact about transitive groups of prime degree is that they are all
primitive, that is, they leave invariant no non-trivial equivalence relations. In particular, this means
that rational or meromorphic functions of prime degree cannot be compositions of those of lower
degree. Groups of prime degree are also rather rare: for example, there are 2 801 324 transitive
groups of degree 32 (all but seven of them imprimitive), and only twelve groups of degree 31;
similarly there are 315 842 groups of degree 40, but only ten of degree 41, and six of degree 47.
The number of transitive groups of degree 32 is computed in [29]. The database [20] contains a
list of all transitive groups of degree m ≤ 47, m , 32. The GAP system [21] contains a list of all
primitive groups of degrees m ≤ 2499, and therefore, in particular, a list of all the groups of prime
degrees up to the same limit.

One of the sections of the memoir by Évariste Galois [19]1 is called “Application to irreducible
equations of prime degree”. If we translate the work of Galois on polynomials and their roots into

1In his preface of 16 January 1831, Galois writes that this text is an “extrait d’un ouvrage que j’ai eu l’honneur de
présenter à l’Académie il y a un an”. The French word “ouvrage” means either a book or just a large piece of work.
This larger text was sent to Fourier for refereeing. Fourier had suddenly died, and the manuscript was never found
among his papers.
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modern terminology, he showed that the solvable groups of prime degree p are the subgroups G of
the 1-dimensional affine group

AGL1(p) = {t 7→ at + b | a, b ∈ Fp, a , 0}

containing the translation subgroup Cp = {t 7→ t + b | b ∈ Fp}. Such groups G are semidirect
products G = Cp o Cd where Cd acts as a subgroup of F∗p for some divisor d of p − 1. There is one
group G for each such d, including G = Cp for d = 1 and G = AGL1(p) for d = p − 1.

This directs our attention to the nonsolvable groups of prime degree. Burnside [8, §251] showed
that any such group G must be doubly transitive (as is AGL1(p), unlike its proper subgroups).
In fact, in this case elementary arguments show that a minimal normal subgroup S of G is a
nonabelian simple group, which is also transitive of degree p, with trivial centraliser CG(S ) in G.
Thus G acts faithfully by conjugation on S , so

S ≤ G ≤ Aut S .

This reduces the problem to that of determining the nonabelian simple groups S of prime degree p,
and then studying their automorphism groups for possible subgroups G of degree p (the action of S
need not extend to all subgroups of Aut S ).

The classification of finite simple groups was announced around 1980, though not completely
proved until over twenty years later. One consequence (see [9], for example) was the classification
of doubly transitive finite permutation groups. There are eight families, described in some detail
in [13, §7.7] and summarised in [10, §7.4]2. As far as our problem is concerned, most of them
can be ignored, as their degrees are composite: for example, the symplectic groups Sp2n(2) have
degrees 2n−1(2n ± 1), while the unitary and ‘small’ Ree groups over Fq have degree q3 + 1, divisible
by q + 1. The groups which survive this elimination process are listed in the following theorem:

Theorem 2.1 (Transitive groups of prime degree). The nonabelian simple permutation groups S
of prime degree, together with any transitive groups G ≤ Aut S of degree equal to that of S , are as
follows:

(a) alternating groups S = Ap for primes p ≥ 5, together with the corresponding symmetric
groups Aut(Ap) = Sp;

(b) G = S = L2(11) for p = 11, acting on the cosets of a subgroup A5 (two representations,
on two conjugacy classes of such subgroups, equivalent under Aut S = PGL2(11)), and
the Mathieu groups S = M11 and M23, acting on Steiner systems with p = 11 and p = 23
points;

(c) groups G such that S = Ln(q) ≤ G ≤ PΓLn(q) ≤ Aut (Ln(q)), acting on the points or
hyperplanes of the projective space Pn−1(Fq) when the degree m = (qn − 1)/(q − 1) is a
projective prime, m ≥ 5.

If we also include the affine groups, where
(d) Cp ≤ G ≤ AGL1(p) for primes p,

2Note that Aut M22, of degree 22, is omitted from [13, p. 252]. Similarly, L2(11), of degree 11, is omitted from
the list of groups of prime degree in [30, §V.21.2], though it is mentioned in II.8.28(6) and in the Errata in the 2nd
printing.
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then we have a complete list of the transitive groups of prime degree.

Remark 2.2 (Commentaries on Theorem 2.1).

(1) The group L2(11) in (b) is one of three cases, known already to Galois, in which the simple
group L2(p) has a non-trivial transitive representation of degree less that p + 1, specifically
of degree p = 5, 7 or 11 on the cosets of a subgroup isomorphic to A4, S4 or A5. The first
case appears in both (a) and (c), via the isomorphisms L2(5) � A5 � L2(4), while the second
appears in (c) via the isomorphism L2(7) � L3(2). The group Aut (L2(11)) = PGL2(11)
does not have a representation of degree 11; hence, only the group L2(11) is a member of
our list.

(2) For the two Mathieu groups in (b) we have Aut (M11) = M11 and Aut (M23) = M23.
(3) In (c), we have Aut (Ln(q)) = PΓLn(q) if n = 2, but if n ≥ 3 then Aut (Ln(q)) contains

PΓLn(q) with index 2, the ‘extra automorphism’ arising from the point-hyperplane duality
of Pn−1(Fq).

(4) In (d), the group AGL1(p) is not the automorphism group of Cp (indeed, Aut (Cp) � Cp−1).
The case (d) does not correspond to the general scheme of the cases (a), (b), (c) since, as
explained above, the group AGL1(p) is solvable.

For a given projective prime m, the groups G in (c) are easily determined: they correspond
bijectively to the subgroups of

PΓLn(q)/Ln(q) � (PGLn(q)/Ln(q)) o GalFq � Cd o Ce

where d = gcd(q − 1, n) and q = pe for some prime p. In fact, if m is prime then n is prime
(see Remark 1.2) and q . 1 mod (n), so d = 1, the groups PGLn(q) and Ln(q) coincide, and
PΓLn(q)/Ln(q) � Ce. The real problem is to know which primes are projective, and thus correspond
to groups in (c), and in particular whether or not there are infinitely many of them.

Although this paper concentrates on those cases where Ln(q) has prime degree, there is also
interest in cases such as L5(3) where its natural degree m is a prime power (112 in this case). For
example, Guralnick [25] has shown that if a nonabelian simple group S has a transitive represen-
tation of prime power degree, then S is an alternating group or Ln(q) acting naturally, or L2(11),
M11 or M23 acting as in Theorem 2.1(b), or the unitary group U4(2) � Sp4(3) � O5(3) permuting
the 27 lines on a cubic surface. In particular, S is doubly transitive in all cases except the last,
where it has rank 3, that is, three orbits on ordered pairs. See also [14], where Estes, Guralnick,
Schacher and Straus have shown that for each prime p there are only finitely many e, q, n ≥ 3 such
that pe = (qn − 1)/(q − 1).

Another related topic which we will not address here is the Feit–Thompson Conjecture [17]
(see also [26, Problem B25]), that if p and q are distinct primes then (pq − 1)/(p − 1) does not
divide (qp − 1)/(q − 1). A proof of this would significantly shorten the (very long) proof of the
theorem [18] that groups of odd order are solvable.
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3. The Bunyakovsky Conjecture

Viktor Bunyakovsky (1804–1889) was a Russian mathematician and a disciple of Cauchy. In
Russia he is mainly known for the Cauchy–Bunyakovsky inequality which, in the Western tradi-
tion, is named after Cauchy–Schwarz. (As is stated in the Wikipedia, Bunyakovsky “. . . is credited
with an early discovery of the Cauchy–Schwarz inequality, proving it for the infinite dimensional
case in 1859, many years prior to Hermann Schwarz’s works on the subject.”)

In 1857, Bunyakovsky formulated the following conjecture (see [6, 7]).

Conjecture 3.1 (Bunyakovsky Conjecture). The following fairly obvious necessary conditions for
a polynomial f (t) ∈ Z[t] to have infinitely many prime values for t ∈ N are also sufficient:

• the leading coefficient of f should be positive,
• f should be irreducible,
• the integers f (t) for t ∈ N should have greatest common divisor 1.

The last condition is needed in order to avoid examples such as f (t) = t2 + t + 2, which satis-
fies the first two conditions but has even values for all t ∈ N; Bunyakovsky gives the surprising
example f (t) = t9 − t3 + 2520, which is irreducible but has all its values divisible by 504. His con-
jecture is a special case of Schinzel’s Hypothesis H [40], which concerns finite sets of polynomials
simultaneously taking prime values.

Remark 3.2 (Verification of the coprimality of f (t) for t ∈ N). The existence of examples like the
one above leads to the following question: how to verify that the greatest common divisor of f (t)
for t ∈ N is 1? A method (today we would say, an algorithm) proposed by Bunyakovsky is based
on the following observations.

(1) Let f (t) = cntn + · · · + c1t + c0. If a prime p divides all the values of f (t) for t ∈ N, then p
is a divisor of c0. Indeed, substituting t = p in f (t) and taking the result modulo p we get
c0 ≡ 0 mod (p). Thus, we have only a finite number of primes p to test.

(2) Let h(t) be a polynomial of degree k < p. Then all the values of h(t), t ∈ N, are divisible
by p if and only if all the coefficients of h are divisible by p. Indeed, otherwise, reducing
h(t) modulo p we would get a non-zero polynomial of degree less that p which would have
p roots.

(3) All the values of the polynomial tp−t are obviously divisible by p. Let h(t) be the remainder
of f (t) on division by tp − t. All that remains is to determine whether the coefficients of
h(t) are all divisible by p.

The conjecture is true for deg( f ) = 1: this is Dirichlet’s Theorem on primes in an arithmetic
progression (see [4, §5.3.2] for a proof). However, it has not been proved for any polynomial of
degree greater than 1, including the case f (t) = t2 +1 (see [26, §A1], [27, §2.8] or [38, Ch. 3.IVD]);
this is sometimes called Landau’s problem, though in fact it goes back to Euler [15]. In our case we
have the advantage that we are not restricted to a single polynomial: we may consider polynomials
f (t) = 1+ t+ t2 + · · ·+ tn−1 for any prime n ≥ 3. (Since we have nothing to add to the current state of
knowledge or ignorance concerning Fermat primes, we will assume for the rest of this paper that
n , 2.) On the other hand, we require prime values of f (t) where t is a prime power , so a proof
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of the Bunyakovsky Conjecture for such a polynomial would not necessarily yield infinitely many
projective primes.

Finally, we note that the Bunyakovsky Conjecture has recently arisen in a similar way in the
construction by Amarra, Devillers and Praeger [2] of block-transitive point-imprimitive 2-designs
with specific parameters.

4. Heuristic arguments

In this section we will present some heuristic arguments to support the conjecture that there are
infinitely many projective primes m = (qn − 1)/(q − 1). They are based on heuristic arguments
used elsewhere in considering the distribution and number of primes of a given form. In particular,
some of the arguments in this section are adapted from Wagstaff’s treatment [41] of conjectures
of Gillies, Lenstra and Pomerance about Mersenne primes, and its summary in Prime Pages3. Of
course heuristic arguments, based on assumptions which, although plausible, cannot be rigorously
justified, do not prove anything (in particular, see the warning in Section 4.5). However, they may
suggest results which one could attempt to prove by more legitimate means. Authors of classic
texts did not disdain such kind of arguments: see, for example, Sections 2.5 and 22.20 of the
book [27] by Hardy and Wright, where they present heuristic evidence that there are only finitely
many Fermat primes whereas there are infinitely many prime pairs; see also the discussion of
probabilistic methods in [34, Notes on Ch. 8.3] and Pólya’s carefully-qualified defence of heuristic
reasoning in number theory in [35].

Beside the “general” conjecture of infinitely many projective primes we also formulate a num-
ber of “specific” (and therefore stronger) conjectures concerning projective primes of some spe-
cific forms. Their plausibility is based mainly on a series of computational results presented in
Sections 6 and 7.

4.1. Prime divisors of m. We consider firstly the case of any fixed prime n ≥ 3, and secondly that
of any fixed prime power q. In each case, we will need the following lemma in order to give better
estimates for the number of projective primes up to some bound.

Lemma 4.1 (Prime divisors of m). Let m = (qn − 1)/(q − 1) for some integer q and prime n ≥ 3,
and let r be a prime dividing m. Then either r ≡ 1 mod (2n) (so in particular r ≥ 2n + 1), or r = n
with q ≡ 1 mod (n). Conversely, if q ≡ 1 mod (n) then m is divisible by n.

Proof. If a prime r divides m then qn ≡ 1 mod (r). Since n is prime, it follows that either n divides
the order r − 1 of the multiplicative group F∗r , or q ≡ 1 mod (r).

If n divides r − 1 then r ≡ 1 mod (n). Clearly m = 1 + q + · · · + qn−1 is odd, and hence so is r, so
r ≡ 1 mod (2n) since n is odd and hence r ≥ 2n + 1.

If q ≡ 1 mod (r) then

m = 1 + q + · · · + qn−1 ≡ 1 + 1 + · · · + 1︸            ︷︷            ︸
n times

≡ n mod (r).

3See https://primes.utm.edu/mersenne/heuristic.html.
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However, m ≡ 0 mod (r), so n ≡ 0 mod (r) and hence r = n since n is prime. The converse is
obvious. �

Thus m is not divisible by any prime r ≤ 2n, except the prime r = n if q ≡ 1 mod (n).

Example 4.2 (For Lemma 4.1). Let n = 3. If q = 11 . 1 mod (3) then m = 133 = 7 · 19; this is
divisible by the primes r = 7 and 19, both greater than 2n = 6. However, if q = 16 ≡ 1 mod (3)
then m = 273 = 3 · 7 · 13, divisible by the prime r = n = 3 in addition to r = 7 and 13. Note that
the ‘large’ primes 7, 13 and 19 appearing here as divisors of m are all congruent to 1 mod (2n).

4.2. Fixed n, while q = p→ ∞. Let us fix a prime n ≥ 3, and consider whether m = (qn−1)/(q−1)
is prime. For simplicity we will restrict q to be prime, rather than a prime power; therefore, from
now on we will denote it by p instead of q. By the Prime Number Theorem (see [27, Theorem 6
and Ch. XXII] for example), the number of primes p in the range 1 ≤ p ≤ x is approximately
x/ ln(x) for large x. However, if p ≡ 1 mod (n) then m cannot be prime by Lemma 4.1, so we
should restrict attention to the primes p . 1 mod (n). Since primes are approximately evenly
distributed between the non-zero congruence classes mod (n) (see [4, §5.3.2], for example), the
number of primes p we should consider is therefore approximately (n − 2)x/(n − 1) ln(x).

Now 1 ≤ m ≤ (xn−1)/(x−1), and the probability that a randomly-chosen integer m in this range
is prime is approximately

(2)
1

ln((xn − 1)/(x − 1))
≈

1
n ln(x) − ln(x)

=
1

(n − 1) ln(x)
.

However, we know from Lemma 4.1 that m . 0 mod (r) for each prime r ≤ 2n, including r = n
since p . 1 mod (n). For each such r, excluding this one congruence class mod (r) multiplies the
probability of m being prime by r/(r − 1). If we regard congruences modulo distinct primes as
statistically independent, then we should multiply the probability in (2) by P(2n), where

(3) P(y) :=
∏

prime r≤y

(
1 −

1
r

)−1

for y ≥ 2 and the product, as indicated, is over all primes r ≤ y. This gives an approximate
probability

(4)
P(2n)

(n − 1) ln(x)
that m is prime. For fixed n this has the form cn/ ln(x) for a constant

cn :=
P(2n)
(n − 1)

.

If n is small one can easily calculate cn: for instance c3 = 15/8 and c5 = 35/32. For large n one
can approximate cn by using a theorem of Mertens (see [32], [27, §22.9] or [34, Theorem 8.8(e)])
that ∏

prime r≤y

(
1 −

1
r

)
∼

µ

ln(y)
as y→ ∞,
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where µ := e−γ = 0.561459 . . . and γ is the Euler–Mascheroni constant 0.577215 . . .. This gives an
approximate probability

(5)
cn

ln(x)
∼

eγ ln(2n)
(n − 1) ln(x)

that m is prime.
If we multiply this probability by the approximate number of primes p . 1 mod (n) in the range

1 ≤ p ≤ x, namely (n − 2)x/(n − 1) ln(x), we see that the expected number of primes m arising in
this way is approximately

(6)
cn(n − 2)x

(n − 1)(ln(x))2 ∼
eγ(n − 2) ln(2n)x
(n − 1)2(ln(x))2 ≈

1.781(n − 2) ln(2n)x
(n − 1)2(ln(x))2 .

Since this number tends to +∞ as x→ ∞ for fixed n, this suggests that we should obtain infinitely
many projective primes m in this way for any fixed prime n ≥ 3 (and likewise if we allow q to be
an arbitrary prime power).

For each fixed n the estimate in (6) has the form Cnx/(ln(x))2 for some constant Cn depending
only on n. This is analogous to the Hardy–Littlewood estimate Cx/(ln(x))2 for the number π2(x)
of twin prime pairs p, p + 2 with p ≤ x (see [36]), where

C = 2 ·
∏

prime r≥3

r(r − 2)
(r − 1)2 ≈ 1.320323632.

Example 4.3 (n = 3). If we take n = 3, so that cn = 15/8, then the number of primes m = 1+ p+ p2

for primes p ≤ x should be approximately

(7)
15x

16 ln(x)2

for large x. This estimate is compared with computational evidence in Section 6.4 (see Table 2).

4.3. Fixed prime power q = pe with e ≥ 2. Instead, let us now fix q and let n→ ∞.

Lemma 4.4. If e ≥ 2 then there are no projective primes m = (qn − 1)/(q − 1) with n > e.

Proof. If e ≥ 2, so that q is a prime power but not itself a prime, we have

m =
qn − 1
q − 1

=
(1 + p + · · · + pn−1) (1 + pn + · · · + pn(e−1))

1 + p + · · · + pe−1 .

This is clearly composite if n > e since the two factors in the numerator are each larger than the
denominator. �

Thus, for a fixed q with e ≥ 2 we can have only a finite number of projective primes m.

Remark 4.5 (e = 2). If e = 2 and m is prime then n = 2 (and hence q = p2 is even, so that p = 2
and m = 1 + q = 5), against our earlier assumption; thus in dealing with prime powers q = pe > p
(as in Section 6.8, where a number of examples are given) we will generally assume that e ≥ 3.
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Since the ultimate goal of this line of research is to complete the classification of the permutation
groups of prime degree, it would still be of interest to know the finitely many projective primes
arising for each proper prime power q.

4.4. Fixed prime p while n → ∞. Let us therefore take e = 1, so we fix a prime p, and consider
the primality of m = (pn − 1)/(p − 1) for odd primes n as n→ ∞. By Lemma 4.1 we may exclude
any primes n dividing p − 1, since they cannot give prime values of m. Then m is not divisible by
any prime r ≤ 2n.

By the Prime Number Theorem, for large n a randomly-chosen integer close to (pn − 1)/(p − 1)
is prime with probability approximately

(8)
1

ln((pn − 1)/(p − 1))
≈

1
n ln(p) − ln(p − 1)

.

However, m is not uniformly distributed, since it is coprime to each prime r ≤ 2n. As before, for
each such r this excludes a proportion 1/r of the integers close to (pn − 1)/(p − 1), so we should
multiply the probability in (8) by M(2n) ∼ eγ ln(2n), giving an approximate probability

(9)
eγ ln(2n)

n ln(p) − ln(p − 1)
∼

eγ ln(n)
n ln(p)

that m is prime, for large n. (For small p, as in Section 6.7, this last approximation could induce
significant errors.)

If we choose the prime n uniformly and randomly from the range p ≤ n ≤ x for some large x
(so that most such n are large as above), then the expected number of primes m arising is the sum
of the probabilities in (9), that is

eγ

ln(p)

∑
n

ln(n)
n

where the sum is over all primes n such that p ≤ n ≤ x. Now∑
n

ln(n)
n
≈ ln(x) − ln(p − 1),

(see [27, Theorem 425]), so the expected number of primes m is approximately

(10)
eγ(ln(x) − ln(p − 1))

ln(p)
∼

eγ ln(x)
ln(p)

≈
1.781 ln(x)

ln(p)
.

Since this tends to +∞ with x, we may expect to obtain infinitely many projective primes m from
any given prime p ≥ 2. This estimate is compared with computational evidence in Section 6.7 (see
Table 4).

4.5. A warning. Invoking the independence of congruences modulo different primes in order to
make heuristic estimates, as we did in Section 4.2, has previously generated controversy: for
instance, Wagstaff discusses this in [41], citing criticism by Lenstra in [31]. This is best illustrated
with Pólya’s discussion in [35] of the following well-known paradox.

Based on the type of argument used in Section 4.2, one can attempt a heuristic proof of the Prime
Number Theorem. An integer x is prime if and only if x . 0 mod (r) for each prime r ≤ x. For each
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such r this event has probability (r − 1)/r, so by regarding these events as mutually independent,
and by using Mertens’s Theorem, one might expect x to be prime with probability

(11)
∏

prime r≤x

(
1 −

1
r

)
∼

µ

ln(x)
as x→ ∞,

where µ = e−γ = 0.561459 . . .. However, the correct asymptotic probability is 1/ ln(x), so this
argument underestimates the probability of x being prime (and hence the values of the prime-
counting function π(x)) by a factor of µ. Of course, it is sufficient to eliminate prime factors
r ≤ x1/2, rather than r ≤ x, so this alternative approach gives a second estimate

(12)
∏

prime r≤x1/2

(
1 −

1
r

)
∼

µ

ln(x1/2)
=

2µ
ln(x)

as x→ ∞.

This overestimates the correct probability by a factor of 2µ = 1.122918 . . ., that is, by about
12%. If, as suggested by Pólya in [35], one takes the product over all primes r ≤ xµ then the
correct formula is obtained. Pólya confesses that it is not clear why what he calls this “trick of
the magic µ” works here (Wagstaff [41] calls it a “fudge factor”), but he goes on to argue that
mathematicians should imitate physicists by adapting their theories to fit experimental data when
such paradoxes arise. Similar phenomena are discussed by Pólya [35] in relation to prime pairs and
their generalisations, and by Wagstaff [41] in relation to the distribution of divisors of Mersenne
numbers.

The great Russian mathematician Andreı̆ Kolmogorov used to mention the following episode
(the second author heard it directly from him). Kolmogorov was once present at a talk given by a
prominent Russian physicist. The latter, basing his reasoning on some physical ideas, introduced
the density of a probability distribution on a certain space. Then, he integrated this density and ob-
tained π. At this point, Kolmogorov used to say, I would conclude that we had got a contradiction,
and therefore all the reasoning was wrong. But the conclusion of the physicist was different. Thus,
he said, we must divide the initial formula for the density by π. It seems that Pólya would rather
line up with the physicist.

In our case, an appropriate choice of prime factors of m to avoid is also an intricate matter. For
example, for n = 3, as we will see later, in Section 6.4 and Table 2, formula (7) overestimates the
number of projective primes. But we know that, beside the “small primes” 2, 3 and 5, Lemma 4.1
also forbids all primes of the form r ≡ −1 mod (6). However, even if we adjoin to the product

P(6) =

((
1 −

1
2

) (
1 −

1
3

) (
1 −

1
5

))−1

not all such corresponding terms but only (1 − 1/11)−1, we will get c′3 = 33/16 instead of c3 =

15/8, and estimate (7) will be replaced with 33x/32 ln(x)2, which will overestimate the number of
projective primes even more than (7) does. On the other hand, if we remove the factor (1 − 1/5)−1

from P(6), we will underestimate the desired number.
But this is not yet the end of the story. As we will see in Section 6.5 and Figure 2, the ratio

of our estimates to the true number of projective primes grows, that is, the estimates grow faster
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than the numbers they are supposed to estimate. There are even reasons to believe the overestimate
grows to infinity (though slowly). Obviously, the constant factor does not play any part in this
process: the rate of growth of the estimates depends only on the behavior of the function x/ ln(x)2.
Therefore, it is reasonable to suppose that, for very large x, we will have indeed to eliminate 5 from
the set of forbidden primes. Note however that this process of eliminating or adjoining forbidden
primes is not based on any solid theoretical foundation: it is purely empirical. Therefore, instead of
making artificial choices of which primes to include in the product, it seems at least as reasonable
to consider other functions instead of x/ ln(x)2. This will be done in Section 6.5.

5. Primality testing

Before presenting the experimental results aiming to support our main conjecture (that there are
infinitely many projective primes), let us briefly discuss two problems: the factorization of integers
into prime factors, and the testing of primality. The problems are, evidently, related to each other,
but there is an abyss between their complexities.

5.1. Integer factorization in modern times. According to [3], in 1977, Ronald Rivest, in a letter
to Martin Gardner, estimated that

“. . . factoring a 125-digit number which is the product of two 63-digit prime num-
bers would require at least 40 quadrillion years using the best factoring algorithm
known, assuming that a · b mod (c) could be computed in 1 nanosecond, for 125-
digit numbers a, b, and c.”

It sounded like a solemn chorus from Purcell’s Dido and Aeneas: “Never! Never! Never!” The
same year, Gardner [22] launched a challenge: it was proposed to factor a 129-digit number which
was the product of a 64-digit and a 65-digit prime. Apparently hopeless, whatever the future
progress in computer technology would be.

Subsequent years saw spectacular progress in factorization algorithms. Finally, 17 years later,
in 1994, the above 129-digit number was successfully factored. The project involved some 600
volunteers, 1600 computers, and six months of computation. An account may be found in [3]; the
strange expression “squeamish ossifrage” in the title was the message encrypted using this number
by the RSA cryptographic method.

We skip a number of important developments during the next 15 years and go directly to a
milestone of 2009. In December of that year, a 232-digit number was factored: it was a product
two 116-digit primes. This result was the outcome of two years of work by a team of 13 researchers,
and was crowned with a $50 000 prize. As stated in [39],

“The CPU time spent on finding these factors by a collection of parallel computers
amounted approximately to the equivalent of almost 2000 years of computing on a
single-core 2.2 GHz AMD Opteron-based computer.”

Certainly, 2000 years for a 232-digit number as compared to 40 000 000 000 000 000 years for
a 125-digit one, is incredible progress. A convenient, and machine-independent measure of an
effort in a large-scale computation is GHz-years; in the present case we have 4400 GHz-years of
computing.
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Ten more years have passed, and a 240-digit number was factored in November 2019, and a
250-digit number in February 2020. And here lies the current frontier of the capability of factoring
algorithms. The next challenge, a 260-digit number, still waits for its turn to be factored.

5.2. Testing. The above examples show how difficult, in practical terms, the problem of factor-
ization can be. However, there exist algorithms which establish whether a given integer is prime
or composite, and this without ever trying to factor it. The most well-known, and the most used
in practice, is the Rabin–Miller algorithm [37] (see also the compendium [11]). In particular, it
is implemented in the Maple command isprime. Let us take the above-mentioned 260-digit num-
ber (which, we recall, is not yet factored) and see how this command works. The computation is
carried out on a very modest laptop.

>  >  

>  >  

>  >  

>  >  

0.

false

We see that the correct answer is given, almost literally, “in no time at all”. In fact, the Maple
time-counter outputs the CPU time within an accuracy of 0.001 seconds. Therefore, 0. seconds
time displayed in the above session means < 0.0005 seconds, rounded downwards.

Now consider a harder example, a 6153-digit number we will encounter in Section 6.2.

>  >  

>  >  

>  >  

>  >  

>  >  

13.314

true
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This number is prime, and the computation took more than 13 seconds. A good result, but
to perform this testing on a large scale, that is, with large series of numbers, can turn out to be
time-consuming.

5.3. How the test works. The Rabin–Miller algorithm is probabilistic. In order to determine
whether a given number m is prime it takes a random element t ∈ Zm and verifies a necessary
primality condition. The condition itself is simple, so we give it here.

The number m − 1 is even; suppose it is equal to m − 1 = (2l + 1) · 2k. Compute in Zm

a0 = t2l+1, and then ai = a2
i−1 for i = 1, . . . , k, so that ak = tm−1.

If one of the following holds then m is composite:
(1) While computing the sequence ai, we come for the first time to ai = 1 but the previous

number ai−1 , −1. Indeed, in this case the equation a2 = 1 mod (m) has, beside two
obvious roots 1 and −1, a third root ai−1.

(2) We get ak = tm−1 , 1. This contradicts Fermat’s little theorem.
Thus, if the test tells us that m is composite then this statement is true, and no probability is
involved. If, however, neither of the two above conditions is satisfied, we conclude that m is
probably prime. Rabin [37] showed that the probability of an erroneous answer is bounded by 1/4;
usually it is much smaller. For large m, in the majority of cases this probability is infinitesimally
small. A dialogue from Gilbert and Sullivan’s I am the captain of the Pinafore comes to mind:
“What, never? No, never. What, never? Well, hardly ever”. Nevertheless, in order to be on the safe
side, the test is repeated many times with different (random) values of t. This, by the way, explains
why the treatment of a prime number takes much more time than that of a composite number of
the same size.

Notice that raising a number a to a power ar needs O(log r) arithmetic operations: we compute
first a, a2, a4, a8, . . . (taking squares every time), and then multiply the terms corresponding to the
binary expression of the exponent r. Notice also that, in our case, all computations are made
modulo m, so that the size of the numbers remains bounded.

5.4. Polynomial-time algorithms. The subject of primality testing and factorization has many
ramifications. We only mention very briefly a few of them. We recommend, for an interested
reader, a very concise and clear overview [5] and a more modern and advanced exposition in [16]
(especially Chapter 5, “Primality testing—an overview”).

There are several algorithms for primality testing whose complexity is polynomial in the size of
tested numbers. However, for most of them the estimation of complexity is based on some as yet
unproved hypotheses.

Notation 5.1 (Simplified measure of complexity). Denote k := log m, and denote Õ(ks) := O(ks+ε)
for all ε > 0.

This notation allows one to simplify complexity estimates for algorithms such as, for example,
the Schönhage–Strassen algorithm of multiplication of long integers: we may now write just Õ(k)
instead of O(k · log k · log log k).
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The complexity of the Rabin–Miller algorithm is Õ(k2): here O(k) is the number of arithmetic
operations, and Õ(k) is the complexity of an individual operation.

Four years before Rabin, Miller used the same test but in a deterministic way. Namely, it suffices
to make the test for all t ≤ 2 log(m)2 = 2k2, provided that the Extended Riemann Hypothesis is true.
Thus, this algorithm, of complexity is Õ(n4), while being deterministic, is based on an unproved
conjecture. Also, the factor 2k2 is not innocuous. For k ∼ 6000, as in the above example, it
transforms seconds into years.

Remark 5.2 (Are long computations reliable?). It is important to note that in a long computation
there is a significant probability of a hardware error. This probability is much greater than that in
the Rabin–Miller test.

In a revolutionary work [1], an unconditional polynomial time algorithm for primality testing
was given for the first time. Here ‘unconditional’ means that the estimate of its complexity does not
depend on any unproved statement. After several improvements its complexity is now established
as Õ(k15/2). It may also be Õ(k6) if another as yet unproved conjecture is valid. Its theoretical
impact is great but its practical utility is very limited.

Another method is based on the theory of elliptic curves. It is commonly known as the ECPP
algorithm, which means Elliptic Curve Primality Proving. The names we must mention here are
Sh. Goldwasser, J. Kilian, A. Atkin and F. Morain. This algorithm is probabilistic; however, it is
not of the “Monte-Carlo type” but of the “Las Vegas type”. The latter means that it always gives
the correct answer; it is the computation time which is random. It is polynomial on average if
certain as yet unproved conjectures are true. Beside the correct answer, this algorithm also creates
a primality certificate. A certificate is “something” which may be difficult to find but, once found,
allows one to make a verification easily.

In [5], the following example is given. Consider the number m = 44052638 + 26384405. It
has 15 071 digits. The proof of its primality by the ECPP algorithm was achieved in 5.1 GHz-
years. This is a truly remarkable result if we compare it with other error-free algorithms. Note,
however, that the Rabin–Miller algorithm gives the correct (though unproved) answer in less than
two minutes.

5.5. A few comments. Since 1980, when Michael Rabin published his algorithm, not a single
case of an erroneous answer has been observed. Even financiers, in their cryptographic protocols,
rely entirely on this test. However, a mathematical mind resists accepting a “proof” which in
principle might be wrong, even if the probability of such an event is infinitesimally small. What
then to do if we have doubts about the validity of the conclusion ‘prime’ given by the probabilistic
test? In our opinion, the most reasonable way to proceed is to run this test again once or twice.
The test does not repeat exactly the same operations since it chooses different random elements of
Zm every time. In this way the probability α of an error, already infinitesimal, will be replaced with
α2 or α3. (We may ask, rather provocatively: how many times can you repeat a two-minute test if
you have 5.1 years at your disposal?)

And what if, by an incredible combination of chances, we take a composite number for a prime
one? Well, let us recall that the aim of our particular study is to collect evidence that there are
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infinitely many projective primes. Therefore, one prime less or one prime more does not change
much.

6. Computational evidence

6.1. Bunyakovsky’s conjecture from an experimental perspective. The data in favor of the
veracity of this conjecture abound. If we take, for example, f (t) = t2 + t + 1 and count the number
of integers t ≤ 107 for which f (t) is prime, we get 745 582 solutions. A very “modest” particular
case of Bunyakovsky’s conjecture is known as Landau’s conjecture: it concerns f (t) = t2 + 1. In
this case the number of t ≤ 107 for which t2 + 1 is prime is 456 362. There is little doubt that, at
least in these two cases, the conjecture is true. No proof is, however, in view.

The main motivation of this note comes from group theory. Therefore, we will mainly consider
not arbitrary values of t but only prime powers t = pe, e ≥ 1, and not arbitrary polynomials f (t)
but only those of the form

f (t) =
tn − 1
t − 1

= 1 + t + t2 + · · · + tn−1.

Remark 6.1 (Terminological). While speaking of prime powers, according to the context we may
mean pe with e ≥ 1, that is, including “pure” primes, or, sometimes, with e ≥ 2, in order to put
prime powers in contrast with the pure primes whose exponent is e = 1.

6.2. First series of projective primes. A computer search has revealed 668 projective primes
with 2 ≤ q ≤ 2000 and 3 ≤ n ≤ 2000, including one with 6153 decimal digits, arising from
q = 1201 and n = 1999. It is interesting to note that only five pairs (q, n) out of 668 correspond to
prime powers q = pe with e ≥ 2, namely,

(q, n) = (23, 3), (27, 7), (29, 3), (33, 3), (113, 3).

All the other values of q are “pure” primes.

6.3. Number 31. A computer search of prime degrees up to 1012 reveals L3(5) and L5(2) as the
only pair of groups Ln(q) with the same natural degree in this range; it would be interesting to
know whether any other such pairs exist.

Conjecture 6.2 (Number 31). Beside 31, there are no other natural degrees common to two dif-
ferent projective groups Ln(q).

Remark 6.3 (Goormaghtigh conjecture). The Diophantine equation

xn − 1
x − 1

=
yk − 1
y − 1

has been studied by many authors (see [26, Problem B25], for example). In 1917, a Belgian
engineer and amateur mathematician René Goormaghtigh4 (1893–1960) conjectured [23] that this
equation, for n , k, n, k ≥ 3, has only two solutions in N: 1 + 2 + 4 + 8 + 16 = 1 + 5 + 25 = 31
and 1 + 2 + 4 + · · · + 212 = 1 + 90 + 902 = 8191. However, 90 is not a prime power, so that there

4See https://forvo.com/word/ren%C3%A9 goormaghtigh to learn how to pronounce this name.
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is no field with 90 elements. By the way, the number 8191 is prime. Therefore, it is an instance of
Bunyakovsky’s conjecture for two different polynomials (and certainly for many other ones, like
t2 + 91, for example), but it is a projective prime for only one of them, namely, 1 + t + t2 + · · ·+ t12.

In [12], it is proved that for fixed exponents n , k, n, k ≥ 3, there can be only a finite number of
solutions. For additional information about this equation see [24].

6.4. Projective planes over prime fields. Let us take only prime values p, not taking into account
the prime powers q = pe with e ≥ 2, let us fix n = 3 and consider projective primes m = 1 + p + p2.
Our colleague Jean Bétréma examined all primes p ≤ 1011 using the package Primes.jl of the
language Julia. It turns out that Julia is much more efficient than Maple for problems of this
sort. We partially reproduce Bétréma’s results in Table 1.

Segment #(prime p) #(prime m) ratio max p
2, . . . , 1010 455 052 511 15 801 827 3.473% 9 999 999 491

1010, . . . , 2 · 1010 427 154 205 13 882 936 3.250% 19 999 999 757
2 · 1010, . . . , 3 · 1010 417 799 210 13 279 095 3.178% 29 999 999 921
3 · 1010, . . . , 4 · 1010 411 949 507 12 913 713 3.135% 39 999 999 719
4 · 1010, . . . , 5 · 1010 407 699 145 12 645 233 3.102% 49 999 999 619
5 · 1010, . . . , 6 · 1010 404 383 577 12 439 618 3.076% 59 999 999 429
6 · 1010, . . . , 7 · 1010 401 661 384 12 274 191 3.056% 69 999 999 287
7 · 1010, . . . , 8 · 1010 399 359 707 12 136 112 3.039% 79 999 999 679
8 · 1010, . . . , 9 · 1010 397 369 745 12 010 780 3.023% 89 999 999 981
9 · 1010, . . . , 1011 395 625 822 11 910 803 3.011% 99 999 999 977

Total 4 118 054 813 129 294 308 3.140% 99 999 999 977

Table 1. The second column gives the number of primes in the corresponding seg-
ment, while the third column gives the number of those primes p which create a
projective prime m = 1 + p + p2. The proportion of such primes among all the
primes of the second column is given in the fourth column.

We may see from this table that the number of primes p ≤ 1011 which produce a prime value of
m is 129 294 308, the largest of them being 99 999 999 977. The corresponding projective prime is
m = 9 999 999 995 500 000 000 507. Such primes p represent approximately 3.140% of the total
number 4 118 054 813 of primes up to 1011.

Of course, this percentage diminishes together with the growth of the upper limit. For example,
if we count the proportion of such primes up to 106, we get 5.97%. Nevertheless, it is quite rea-
sonable to conjecture that even in this very restricted situation there are infinitely many projective
primes.

Table 2 compares the numbers of projective primes m = 1 + p + p2 for primes p ≤ xi = i · 1010,
i = 1, . . . , 10, with the heuristic estimates given by (7) in Section 4.2. It can be seen that the latter
are of the right order of magnitude, but that they consistently over-estimate the number of such
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x #(prime m | p ≤ x) estimate (7) ratio estimate (13-14) ratio
1 · 1010 15 801 827 1.7683 × 107 1.1190 1.5799306 × 107 0.999841
2 · 1010 29 684 763 3.3328 × 107 1.1227 2.9686686 × 107 1.000065
3 · 1010 42 963 858 4.8096 × 107 1.1195 4.2969637 × 107 1.000135
4 · 1010 55 877 571 6.2736 × 107 1.1227 5.5881270 × 107 1.000066
5 · 1010 68 522 804 7.7239 × 107 1.1272 6.8526763 × 107 1.000058
6 · 1010 80 962 422 9.1332 × 107 1.1281 8.0965961 × 107 1.000044
7 · 1010 93 236 613 1.0524 × 108 1.1287 9.3237376 × 107 1.000008
8 · 1010 105 372 725 1.1900 × 108 1.1293 1.0536780 × 108 0.999953
9 · 1010 117 383 505 1.3262 × 108 1.1298 1.1737691 × 108 0.999944

1011 129 294 308 1.4614 × 108 1.1303 1.2927974 × 108 0.999887

Table 2. The second column gives the cumulative totals from the second column
in Table 1, i.e. the number of projective primes m with n = 3 arising from primes
p ≤ xi = i · 1010 (i = 1, . . . , 10); the third column gives an approximation for the
estimate for this number from Section 4.2, while the fourth column gives the ratio
of these two numbers. The meaning of the last two columns is explained in Sec-
tion 6.5.

primes by about 12%. In Section 6.5 we present another estimate. We do not have any theoretical
bases to support it, only empirical ones, but it approximates the values we need much better than
the previous estimate. The results of this estimate are represented in the two last columns of
Table 2.

6.5. An empirical estimate vs. the theoretical one: rectifying the anomaly. We see that for
large x estimate (7) systematically overestimates the number of projective primes. Hence, let us
instead consider an estimate of the following form:

y =
Cx

ln(x)α
(13)

where the constants C and α are to be found from empirical data.
Denote z = x/y = 1

C ln(x)α. Then, taking the logarithm of each side of this equation we get

ln(z) = − ln(C) + α · ln(ln(x)).

Thus, in the coordinates
u = ln(ln(x)), v = ln(z)

equation (13) takes the form of an equation of a straight line

v = a + αu where a = − ln(C).

Our next steps are as follows:
(1) Take a number of pairs (xi, yi) where xi are at our choice while yi are the numbers of

projective primes m = 1 + p + p2 created from primes p ≤ xi.
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(2) Compute the corresponding pairs (ui, vi).
(3) Put the points (ui, vi) on the plane of the coordinates (u, v), in the hope that they will be

reasonably close to a straight line v = a + αu.
(4) Find the equation of this straight line and thus obtain the values of C = e−a and of α.

The points should be taken with care. As we will see in Section 7, numbers of projective primes
behave rather randomly. Therefore, in order to get a reasonable estimate, the values of xi must be
large enough, and the spaces between them must also be large.

The numbers xi = i · 1010, i = 1, . . . , 10 satisfy both conditions. Taking xi and yi from the first
two columns of Table 2 we get the results which are shown in Figure 1. We would say that they
are even better than one might hope. The corresponding constants, found by the method of least
squares, are as follows:

a = −0.150383694, C = e−a = 1.162280117, α = 2.104419156.(14)

The estimates given by (13) with the constants (14), and their ratios to the true number of projective
primes are shown in the last two columns of Table 2.

Remark 6.4 (Overestimate). If the estimates (13-14) are correct, and it seems that they are, or at
least if they are close to the correct asymptotic, then the overestimate of the ratio given by formula
(7) tends to infinity, though rather slowly: it is proportional to ln(x)α−2.

Figure 1. The horizontal axis corresponds to the variable u = ln(ln(x)), the vertical
one to the variable v = ln(x/y) where y is meant to count projective primes. The
ten distinguished points correspond to xi = i · 1010, while yi is the number of prime
p ≤ xi such that m = 1 + p + p2 is prime.

It would be interesting to understand the nature of the above constants. For example, α is
reasonably close to 1+2µ = 2.1229 (the constant µ is defined in Section 4.2). It would be tempting
to conjecture that they are equal, especially since µ appears in several other conjectures related to
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Figure 2. Comparison of two estimates. The horizontal scale is logarithmic: an
abscissa k corresponds to the number 10k. White circles represent the ratios of
estimates (7) to the true numbers of projective primes m = 1 + p + p2 obtained from
the primes p ≤ 10k, k = 3, . . . , 11. The solid circles represent the similar ratios for
estimates (13-14). Notice that for smaller numbers both estimates underestimate
the number of projective primes (both black and white points are below the level 1).

prime numbers (see, for example, [35], and also the chapter on the Mersenne primes in [36]). But
no: experience shows that the estimate of the exponent α diminishes when the the bound x grows.
And let us not forget that for the time being we are unable to prove even that there are infinitely
many projective primes, to say nothing of their asymptotic behavior.

6.6. When the exponent n grows. We considered the prime exponents n ≤ 100 and counted the
number of primes p ≤ 106 (omitting prime powers) such that m = (pn − 1)/(p − 1) is also prime.
The results are presented in Table 3: N denotes the number of primes p with the above property,
and max p is the largest p ≤ 106 which, for a given n, produces a prime value of m. The total
number of primes up to one million is 78 498. The proportion of “good” primes thus varies (in our
table) from 6% (for n = 3) to 0.5% (for n = 83). There is a general tendency for this proportion to
decrease, but without any apparent regularity.

We do not present the corresponding projective primes m since their decimal representations
are too long: for example, the number m corresponding to the last cell of the table, namely,
m = (998 47197 − 1)/998 470, has 576 digits.

The following conjecture seems quite reasonable:

Conjecture 6.5 (Projective primes for a fixed n). For any fixed prime n ≥ 3 there are infinitely
many prime values m = 1 + p + p2 + . . . + pn−1, where p ranges over all prime numbers.
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n N max p n N max p n N max p n N max p
3 4684 999 773 19 2933 999 067 43 1119 999 961 71 848 999 907
5 4034 999 653 23 1150 999 287 47 1212 999 491 73 577 999 307
7 4436 999 961 29 1032 998 111 53 694 999 007 79 689 996 811

11 2243 999 631 31 1980 997 463 59 1106 999 953 83 390 993 557
13 2658 999 863 37 1285 999 269 61 913 999 763 89 430 995 339
17 2527 999 287 41 862 999 233 67 821 999 727 97 571 998 471

Table 3. For a given prime exponent n ≤ 100, the number N shows how many
primes p ≤ 106 there are such that m = (pn − 1)/(p − 1) is also prime. The column
“max p” shows the largest such p.

p estimation (10) true number exponents n
3 13.832 12 3, 7, 13, 71, 103, 541, 1091, 1367, 1627, 4177, 9011, 9551
5 8.669 11 3, 7, 11, 13, 47, 127, 149, 181, 619, 929, 3407
7 6.796 5 5, 13, 131, 149, 1699

11 5.136 9 17, 19, 73, 139, 907, 1907, 2029, 4801, 5153
13 4.675 9 5, 7, 137, 283, 883, 991, 1021, 1193, 3671
17 4.052 7 5, 7, 11, 47, 71, 419, 4799

Table 4. The last column gives the list of exponents n ≤ 104 such that the number
m = (pn − 1)/(p− 1) is prime. The number of such exponents is given in column 3,
while the estimation of this number by formula (10) is presented in column 2.

6.7. Projective primes with a fixed p. What if we fix p and allow n to tend to infinity (taking
only prime values), as in Section 4.4? Here the computational evidence, presented in Table 4, is
less convincing, which is not surprising given the small number of primes m involved.

For the primes p = 3, 5, 7, 11, 13 and 17, the second column of Table 4 gives the estimates based
on the first expression in (10) for the number of primes m = (pn − 1)/(p − 1) with n ≤ x = 104.
The third column gives the true figures, found by a computer search, and the relevant exponents n
are listed in the fourth column.

We see that the estimation (10) of the number of exponents has a reasonably good correspon-
dence with their actual number. However, we have a feeling that the above data are not entirely
convincing. For example, there are only three exponents in the table, out of 53, which are greater
than 5000. Also, for p = 3, the next “good” exponent, after the one given in the table, is rather far
away: n = 36 913. Therefore, in this case we prefer to formulate not a conjecture but a question:

Question 6.6 (Generalized Mersenne). Let p be a prime. Do there exist infinitely many values of n
such that the number m = (pn − 1)/(p − 1) is prime?
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6.8. Prime powers once again. We now consider fixed prime powers q = pe with e ≥ 2, as
n → ∞. By Remark 4.5, apart from the example q = 22 and m = 5 we can ignore the case e = 2.
An extensive search of prime powers producing projective primes has given the following results:

p = 2: the search for q = 2e, e ≥ 2, producing projective primes, up to q ≤ 1060, gives eight
solutions:

• There are four solutions for which m = 1 + q is a Fermat prime:

(q, n) = (22, 2), (24, 2), (28, 2), (216, 2)

(the other known Fermat prime m = 1 + 21 = 3 does not correspond to e ≥ 2).
• There are three relatively small solutions: (q, n) = (23, 3), (27, 7), (29, 3).
• A rather unexpected solution is (q, n) = (259, 59). The corresponding projective prime

m = 1 + 259 + 2118 + · · · + 259·58

has 1031 digits. It is generally believed that there are only five Fermat primes. However,
this example prevents us from conjecturing that there are only finitely many powers of 2
which yield projective primes.

p = 3: the search for q = 3e, e ≥ 3, producing projective primes, up to q ≤ 1060, gives only one
solution: (q, n) = (33, 3), m = 1 + 27 + 272 = 757. We are inclined to believe that for p = 3 this
solution is unique.

q ≤ 1015: the total search for all prime powers q ≤ 1015 with e ≥ 3 producing projective primes
gives 337 solutions. Only eight of them have the exponent e > 3, namely,

(q, n) = (57, 7), (119, 3), (435, 5), (677, 7), (1675, 5), (3135, 5), (5095, 5), (8595, 5).

For all the other 329 solutions q is the cube of a prime.

q = p3 ≤ 1018: the total search for cubes of primes up to 1018 reveals 2121 solutions, the largest
one being p = 999 953, q = p3 = 999 859 006 626 896 177, and

m = 1 + q + q2 = 999 718 033 132 923 614 193 697 947 364 111 507.

The following conjecture seems to be very plausible:

Conjecture 6.7 (Cubes of primes). There are infinitely many values of q = p3, with p being prime,
such that m = 1 + q + q2 is prime.

Since we did not find any examples where the same prime power q yields more than one projec-
tive prime, we ask:

Question 6.8 (Generalized Mersenne). Does there exist a proper prime power q such that the
number m = (qn − 1)/(q − 1) is prime for more than one value of n?

Of course, Table 4 in Section 6.7 gives a number of examples of this phenomenon where q = p
is prime.
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7. Stochastic behavior of projective primes

In this section, we present a number of observations concerning the stochastic behavior of the
(numbers of) projective primes. Our feeling is that this subject, while being excitingly interesting,
is not yet ready for a profound statistical analysis. However, we would like to share our observa-
tions with the community of specialists in probabilistic number theory in the hope that they may
clarify certain points of our study.

We deal here exclusively with projective primes of the form m = 1 + p + p2, where p is prime.

7.1. Local estimates. Let a, b be two integers, a < b. Then, according to (13-14), the primes
p ∈ [a, b] should create, approximately,

(15) C ·
(

b
ln(b)α

−
a

ln(a)α

)
projective primes of the type m = 1 + p + p2, where C = 1.162280117 and α = 2.104419156.
In Figure 3, left, we consider the primes p ≤ 109. We subdivide this range into 104 segments
S i = [(i − 1) · 105, i · 105] (i = 1, 2, . . . , 104) of equal size 105. Horizontally, we mark the order
number i of a segment (from 1 to 104). For each of these segments, we divide estimate (15) by
the true number of projective primes m = 1 + p + p2 for p ∈ S i; this ratio is the ordinate of the
corresponding point in the picture. The picture thus contains 104 points.

On the right of Figure 3, the construction is similar, but now the range considered is p ≤ 1010,
and the length of each of the 104 segments is 106.

Figure 3. Both pictures contain 104 points. Each point corresponds to a segment in
N of length 105 (left) or 106 (right). The abscissa of a point is the order number of
the corresponding segment. The ordinate is the ratio of the estimate (15) to the true
number of projective primes m = 1 + p + p2 generated by primes p in this segment.
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We may make the following observations.
• There are wild fluctuations in the ratio. Obviously, they are due not to estimate (15) itself

but to the fluctuations in the numbers of projective primes m = 1 + p + p2 with p belonging
to the corresponding segments.
• Comparing the vertical scales shows that the right-hand band of points is narrower than

the left-hand one. This is natural since considering larger segments leads to smoothing the
fluctuations.
• The interesting fact is, however, that the variations in both pictures do not diminish when

we let i increase. We may even say that they increase.

7.2. Histogram. Let us take the right-hand picture of Figure 3. The minimum value of the or-
dinate (i. e., of the ratio) in this picture is rmin = 0.9217, the maximum is rmax = 1.1244. We
subdivide the segment [rmin, rmax] into 100 parts and count the number of points whose ordinates
belong to each part. The resulting histogram is shown in Figure 4, left.

The mean of this distribution is 46.66, the standard deviation is 13.66. On the right of the same
figure we show the density of the normal distribution with the same parameters. Note that the
height of the left picture, which is 300 points out of 10 000, corresponds well to the height of the
density, which is approximately 0.03.

The resemblance of the two graphs is visible. We leave it to the specialists to use, if necessary,
more sophisticated statistical tools.

Figure 4. On the left: the histogram of the distribution of heights of the points in the
right-hand picture of Figure 3. On the right: the density of the normal distribution
with the same mean 46.66 and standard deviation 13.66.

7.3. Conclusion. Our main aim in this note has been to give heuristic and computational evidence
that there are infinitely many projective primes, especially in the simplest and apparently most
abundant case, where n = 3 and q is prime. We will not pursue these speculations further and will
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leave the question of more exact estimates of the number and distribution of projective primes to
the community of experts in probabilistic number theory. (Our own backgrounds and motivation
for this investigation lie in the areas of dessins d’enfants and permutation groups.)
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Chapter IV.

[20] A database of Galois groups, http://www.lmfdb.org/GaloisGroup/.
[21] The GAP Group, GAP – Groups, Algorithms, and Programming, http://www.gap-system.org.
[22] M. Gardner, A new kind of cipher that would take millions of years to break, Scientific American, August 1977,

120–124.
[23] R. Goormaghtigh, L’Intermédiaire des Mathématiciens 24 (1917), 88.
[24] Goormaghtigh conjecture, Wikipedia, https://en.wikipedia.org/wiki/Goormaghtigh_conjecture.
[25] R. M. Guralnick, Subgroups of prime power index in a simple group, J. Algebra 81 (1983), 304–311.
[26] R. K. Guy, Unsolved Problems in Number Theory, Springer-Verlag, New York, 1981.
[27] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford Univ. Press, 1938 (6th ed.

2008).
[28] H. Helfgott, The ternary Goldbach conjecture is true, 2013, https://arxiv.org/abs/1312.7748.
[29] A. Hulpke, Constructing transitive permutation groups, J. Symb. Comp., vol. 39 (2005), no. 1, 1–30.
[30] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin–Heidelberg–New York, 1979.
[31] H. W. Lenstra, Jr., Primality testing, Studieweek Getaltheorie en Computers, Sept. 1–5, 1980, Stichtung

Math. Centrum, Amsterdam.
[32] F. Mertens, Ein Beitrag zur analytischen Zahlentheorie, J. reine angew. Math. 78 (1874), 46–62.
[33] G. L. Miller, Riemann’s hypothesis and tests for primality, Journal of Computer and System Sciences 13 (1976),

310–317.
[34] I. Niven, H. S. Zuckerman and H. L. Montgomery, An Introduction to the Theory of Numbers (5th ed.), Wiley,

New York, 1991.
[35] G. Pólya, Heuristic reasoning in the theory of numbers, Amer. Math. Monthly 66 (1959), no. 5, 375–384.
[36] Prime Pages: https://primes.utm.edu.
[37] M. O. Rabin, Probabilistic algorithm for testing primality, J. Number Theory 12 (1980), 128–138.
[38] P. Ribenboim, The New Book of Prime Number Records, Springer, New York,1995.
[39] RSA numbers: Wikipedia, https://en.wikipedia.org/wiki/RSA_numbers#RSA-768.
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