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Abstract
The connections recently established between combinatorial bicolored
plane trees and Shabat polynomials show that the world of plane trees is
incredibly rich with different mathematical structures; see, for example,
[4], [5]- In this article we use Shabat polynomials to introduce a new
operation, that of a composition, for combinatorial bicolored plane trees.
The composition may be considered as a generalized symmetry.

1 Introduction. Plane trees and Shabat poly-
nomials

A tree is a connected graph without circuits. In order to draw a tree on the
plane, we must choose at each vertex a certain cyclic order of branches which
corresponds to the “trigonometric” rotation around this vertex. Thus the same
tree as an abstract graph may produce several different plane trees.

Definition 1.1 A plane tree is a tree with a prescribed cyclic order of edges
adjacent to each vertex.

Each tree has natural bipartite structure, i.e., it is bicolorable. Coloring the
vertices of a tree in two colors (say, black and white) in one of two possible
ways, we obtain a bicolored tree.

To any bicolored plane tree we put into correspondence its set of valencies
<a,f>=<ai,a,...,0p; 01, 02,...,0; >. Here o, (resp. §;) are the valencies
of black (resp. white) vertices. They must satisfy the obvious conditions
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where m is the number of edges of the tree.
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Lemma 1.2 For any < a, > satisfying the above conditions there exists at
least one bicolored plane tree for which < o, 3 > is the set of valencies.

There is a very interesting class of complex polynomials related to bicolored
plane trees.

Definition 1.3 A polynomial P : C' — C is called a Shabat polynomial if it
has at most two critical values, i.e., there exist ¢g,c; € C such that

P'(z)=0 = P(z)€{c,c1}-

Definition 1.4 Let P(z) and Q(z) be two Shabat polynomials, and let ¢, ¢y
and dy,d; be their critical values. We call P and @ equivalent, if there exist
constants A, B,a,b € C, A,a # 0, such that

Q(z) = AP(az+b)+ B, and dy = Aco + B, di = Ac; + B.

Theorem 1.5 There is a bijection between the set of (combinatorial bicolored
plane) trees and the set of equivalence classes of Shabat polynomials.

In one direction, having a Shabat polynomial P, we obtain the correspond-
ing tree as P~1([co, c1]), where [co, c1] is the segment joining cy and ¢; on the
complex plane (here P~1(cy) is the set of black vertices, and P~1(c;), that of
white ones). In the other direction, having a bicolored plane tree, we write the
following decompositions:

P(z) —C = /\H(z - ai)aia P(Z) —C = )\H(z - bj)ﬂja
i=1 j=1

which gives us the system of m algebraic equations with m + 4 unknowns.
Four additional “degrees of freedom” correspond to the liberty of choosing the
numbers A, B, a, b of definition 1.4. Usually we fix the values of ¢y and ¢;, and fix
in some convenient way the position of the tree itself, by fixing, for example, the
positions of any two of its vertices. See details in [5]. The tree corresponding to
a polynomial P is denoted Ap; obviously, the number of edges m = deg P. The
degree of the system of algebraic equations for the coefficients of P is bounded
by the number of bicolored plane trees with the given set of valencies.

Definition 1.6 The field of definition of a bicolored plane tree is the small-
est number field to which belong the coefficients of the corresponding Shabat
polynomial.

Examples 1.7 The polynomial P(z) = z™ has only one critical value ¢o = 0.
Taking ¢; = 1, and taking the pre-image of the segment [0,1], we obtain the
“star-tree” (see the figure). The Chebyshev polynomial T,,(z) = cos(m arccos z)
has two critical values ¢o = —1 and ¢; = 1. The pre-image of the segment [-1,1]
is the “chain-tree” (see the figure). The field of definition in both cases is Q.
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For the trees shown in the next figure (note that they all have the same set
of valencies < 3,2,1;2,2,1,1 >)
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the corresponding Shabat polynomlal is P(z (2 — 1)%(z — a), where a is a
root of the cubic equation 25a® — 12a2 24a - 16 =0 (each root corresponds
to a specific tree). The field of definition is the field generated by these roots

(here it is Q(+/2)); the critical values are ¢o = 0 and ¢; = —z55(a® + 52a — 32).

Remark 1.8 To compute a Shabat polynomial for a given tree is not an easy
task. For a “random” tree with 24 edges one must solve a system of algebraic
equations of a degree greater than million. But, as the reader will see, sometimes
one may easily compute Shabat polynomials for some very complicated (though
very specific) trees.

2 Composition

For the rest of the paper we fix ¢ = 0 and ¢; = 1.

Lemma 2.1 Let P(u) and Q(z) be two Shabat polynomials, and let P(u) satisfy
the additional condition P(0),P(1) € {0,1}. Then their composition, i.e., the
polynomial R(z) = P(Q(z)), is also a Shabat polynomial.

The proof is a trivial exercise for an application of the chain rule; but the
lemma itself gives us a possibility to introduce the operation of composition for
the plane trees. The geometrical meaning of the condition P(0), P(1) € {0,1}
is that certain two vertices of the tree Ap are distinguished and positioned at
the points v = 0 and v = 1. It is convenient to mark these points by a square
and a triangle, like in the following figure.

In what follows these vertices will be denoted by s and t respectively. Then the
vertices of Ag, being pre-images of s and t, must be marked by squares and
triangles instead of black and white. Note that deg R = mn, where m = deg P,

n = deg Q.



Examples 2.2 Taking P(u) arbitrary and Q(z) = 2", we obtain the symmetric
tree composed of Ap rotated n times around its square vertex. It is well known
that the only possible automorphism of a plane tree is a rotational symmetry.
Thus the composition of plane trees may be considered as a generalized sym-
metry (or, borrowing the terminology from physics, as a hidden symmetry in
the world of plane trees).

Taking Q(z) arbitrary, and P(u) a Chebyshev polynomial normalized in such
a way as to have critical values 0 and 1, i.e., P(u) = $(T)n(2u — 1) + 1), we
obtain the tree Ag whose all edges are subdivided into m parts.

In both cases the structure of a composition is “easily seen”. But this is not
always the case. For example, the following tree is also a composition of two
smaller trees, which is not at all easily seen.

The general procedure of getting the tree Ap from Ap and Ag looks as
follows. Let us decompose the tree Ap into the following parts: the spine,
i.e., the (unique) path from s to t; the body, i.e., the union of all the branches
attached to the spine but not to s or t; the head, i.e., the union of all the
branches (except the spine) attached to t; and the tail, i.e., the union of all the
branches attached to s (except the spine).

Now take the tree Ag and make the following operations: (1) instead of each
edge of Ag insert the body of Ap, respecting the direction from the square to
the triangle; (2) to each square (resp. triangular) vertex of Ag attach the tail
(resp. the head) of Ap the number of times equal to the valency of the vertex
considered.

Example 2.3 The tree shown above is the composition of the following two
trees (Ap is on the left, Ag in the middle, Ag on the right):

Summing up, one may say that the whole tree Ap is inserted instead of each
edge of Ag. (Note that for polynomials it works in the opposite direction: it is
@) which is inserted into P.) In other words, in order to get Ar one must take
n copies of Ap and glue them together at the vertices s and t.



3 Cartographic group

A bicolored plane tree Ap may be represented by the pair of permutations g
and 71 on the set of the edges of Ap, where g is the (counterclockwise) rotation
of the edges around the black vertices, and 71, around the white ones.

Definition 3.1 The effective cartographic group of a bicolored plane tree Ap
is the group Gp =< mg, ™1 > generated by the permutations my and 7.

Remark 3.2 The same permutation group may correspond to different trees.

The group Gp =< mg, w1 > is transitive, because the tree is connected. The
set of valencies of the tree is the set of cycle lengths of 7y and ;. Let us denote
by o5 and o the similar permutations for the tree Ag: these are rotations around
the square and triangular vertices. The composition procedure described above
leads to the following “cartographic description” of the tree Ag.

Theorem 3.3 Let E and F be the sets of edges of the trees Ap and Ag re-
spectively. Denote by es (resp. by e;) the edge of the spine of Ap adjacent to s
(resp. tot). Then the tree Ar may be described by the pair of permutations po
and p1 on the set E x F', where

(mo(e), f) if e es e
pole,f) =< (mo(e),o5(f)) if e=es and s is black,
(mo(e),0¢e(f)) if e=e; and t is black,

and p1 is defined by replacing wo by w1 and “black” by “white”.

Remark 3.4 The edges e; and e; may eventually coincide; but in this case the
vertices s and t cannot have the same color.

The effective cartographic group Gg =< pg, p1 > of the tree Ag is imprim-
itive. But the blocks are not the “copies of Ap” inside Ag as one might think.
In order to get a block of Gr, one must isolate an edge of Ap and take all its
replicas in Ag. For example, the tree shown in the last figure has 2 blocks,
each having 4 edges: one block consists of “dotted” edges, the other one, of the
“solid” ones. In terms of Theorem 3.3 blocks are the sets e x F', with the edge
e fixed.

Thus, the group Gy is a certain subgroup of the wreath product of the groups
G p and G g, which often but not always coincides with the wreath product itself.
This subject deserves a more thourough study.

4 Concluding remarks

Remark 4.1 Field of definition. The field of definition of the tree Agr may
be obtained from the following information: (1) the field of definition of Ag;
(2) the field to which belong the roots of P corresponding to s and t.



Remark 4.2 Inverse problem of enumerative combinatorics. The usual for-
mulation of a problem of enumerative combinatorics is “compute the number of
objects with certain characteristics” (for example, the number of bicolored plane
trees with a given set of valencies). The inverse problem is formulated as follows:
“Let the number of objects be given in advance; classify the characteristics that
lead to exactly this number of objects”.

For example, the sets of valencies that produce exactly one tree, as well as
the corresponding trees, are completely classified [1] (these trees have the field
of definition Q). The same is done for the families of exactly two trees (roughly
speaking, they correspond to quadratic extensions of @). One may observe that
both series of examples contain numerous compositions. We therefore suppose
that the operation of composition will play an important role in the solution of
the inverse enumeration problem.

Remark 4.3 Hypermaps and Belyi functions. The analogue of a Shabat poly-
nomial for a planar map is a Belyi function, i.e., a rational function with only
three critical values 0, 1 and oo. Belyi functions are also closed under composi-
tion, though we must enlarge the set of objects from maps to hypermaps (i.e.,
“maps” whose edges are not necessarily of valency 2, see [3]).

Remark 4.4 Iterations. The relations between the iterations of Shabat poly-
nomials (and trees) and the complex dynamics (Julia sets, Fatou sets etc.) are
yet to be understood.
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