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Abstract 

In his unpublished paper [7] Alexandre Grothendieck has indicated that there exist 
profound relations between the theory of number fields and that of maps on two-dimensional 
surfaces. This theme was later explored by George Shabat (Moscow) and his students (see 
[1,2, 11, 12, 14, 16]). 

For the simplest class of maps, that of plane trees, this theory leads to a very interesting class 
of polynomials which generalize Chebyshev polynomials and which we call Shabat poly- 
nomials. A catalog of Shabat polynomials for all plane trees up to 8 edges is compiled in [4]. In 
the present paper we describe the connection between plane trees and Shabat polynomials, give 
some examples (and counterexamples) and discuss some conjectures. 

1. Critical points and critical values of complex polynomials 

Consider  a po lynomia l  P(z)  with complex coefficients. It maps  a complex plane 

onto  another  one. Take  a point  w ~ C  and consider its inverse image 

P -  = {z I p ( z )  = w}.  
In general, this set consists of n separate  points,  i.e., solutions of the equat ion 

P(z)  = w, where n is the degree of the po lynomia l  P (see Fig. 1). But for some specific 
values of w this equat ion  could have multiple roots,  the inverse image of w thus having 

less than n points. Mult iple  roots  of  P(z)  = w are, obviously,  the roots  of P'(z) = O. 

A point  z E C, at which P'(z) = 0, is called a critical point. A value w = P(z)  at 
a critical point  z is called a critical value. We say that  critical point  z has order  k, if at 
this point  P'(z) = O, P"(z) = 0 . . . . .  p (k-  1)(z ) = 0, P(k)(z) :/: 0 (the least possible order  

of a critical point  is thus equal  to 2). The number  of critical points,  i.e., roots  of P'(z), is 
n - 1 (with multiplicity taken into account); the number  of critical values could be 

much  smaller  than that. 
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Fig. 1. Inverse image of a point. 
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Fig, 2. Inverse image of a segment. 

w/ - ° /  

Example  1. Po lynomia l  P(z) = z" has one critical point  of  order  n (namely, z = 0), and 
one critical value w = 0. 

Example  2. Chebyshev  polynomials  

T,(z) = cos(n arccos(z)) 

have n - 1 critical points  of  order  2 (namely, z = cos(kzr/n), k = 1, 2, . . . ,  n - 1), and 
only two critical values: w -- ___ 1. 

Now,  take a straight line segment,  joining two points  ca and c2 on the w-plane. 
F r o m  now on we will denote  it by [Cl, c2], even in the case when its endpoints  are not  

real. The inverse image P -  1([cl, c2]) of  this segment  is, as a rule, a disjoint union of 
n separate  sets on the z-plane, each one being h o m e o m o r p h i c  to a segment,  but  not  
necessarily straight  (see Fig. 2). We will still call them segments.  To  distinguish 
between the ends of  the segments,  we m a r k  one of them black, and the other  white. 

If, by chance, cl or  c2 (or both) are critical values of P(z), and there are no critical 
values inside the segment  [cl ,  c2], then some of the segments  on the z-plane will glue 
together,  thus forming a graph  (see Fig. 3). In this graph,  vertices of degree 1 are 
ord inary  (non-critical) points, and vertices of  degree greater  than 1 are critical points,  
their order  coinciding with the number  of incident edges. 

The  most  interesting case is when P(z) has only one or two critical values, namely,  

{el. e2} 
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Fig. 3. Ends of some segments are critical points. 
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Fig. 4. Trees corresponding to z" and T,(z). 

2. Polynomials with one or two critical values 

Definition. We call a polynomial P(z) Shabat polynomial if there exist two complex 
numbers cl and cz such that 

P ' ( z ) = 0  ~ P(z )6{c I , c z } .  

The starting fact of the present theory is that the inverse image of the segment 
[c~, c2] under Shabat polynomial is a tree drawn on the plane, or a plane tree. Precise 
definitions will be given below. Two examples of Shabat polynomials were given 
above: P(z) = z" and P(z) = T,(z) (Chebyshev polynomial). The inverse image of the 
segment [0, 1] under z" is a 'star-tree' (or a 'hedgehog'), and the inverse image of the 
segment [ - 1, 1] under T,(z) is a 'chain-tree', see Fig. 4. 

The class of Shabat polynomials is invariant under any non-degenerate linear 
transformations of z- and w-planes: z ~ cz + d and w ~ Cw + D, c, d, C, D ~ C, c ~ O, 

C ¢ 0. By means of the second transformation (of the w-plane) we can transform the 
segment [cl, c2] into any other segment. There are two canonical choices of the 
segment on the w-plane: [0,1] and [ - 1,1]. It is sometimes more convenient to use 
one canonical form, sometimes the other, and sometimes just take an arbitrary 

segment [cl, C23. 

Definition. Two Shabat polynomials P(z) and Q(z) are called equivalent if there exist 
c, d, C, D ~ C, c • 0, C 4= 0 such that 

P(z) = CQ(cz + d) + D. 
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Main Theorem (Riemann, Belyi, Grothendieck, Shabat). There is a bijection between 
the set of combinatorial bicolored plane trees and the set of equivalence classes of Shabat 
polynomials. 

To make this statement clear, we need some definitions concerning combinatorial 
trees. 

3. Combinatorial bicolored plane trees 

A tree is a connected graph without circuits. A plane tree is a tree which is drawn on 
(imbedded into) the plane. A 'picture' of a tree on the plane determines, for any vertex 
of the tree, a cyclic permutation on the set of adjacent vertices. An isomorphism of 
plane trees is an isomorphism of trees that conserves these cyclic permutations (and, 
hence, the orientation). A class of isomorphism of plane trees is called combinatorial 
plane tree; see Fig. 5. 

Combinatorial plane trees were enumerated in I-8] using the theorem of P61ya. 
More explicit formulas for the number of plane trees are given in [9]; see also [15]. 

Any tree has a natural structure of a bipartite graph: its vertices could be colored in 
two colors (say, black and white) in such a way that adjacent vertices would have 
different colors. Having chosen one of two possible colorings, we obtain a bicolored 
plane tree. An isomorphism of bicolored plane trees must conserve not only the 
structure of the plane tree, but also the colors of corresponding vertices; see Fig. 6. 

For the sake of brevity, in what follows we will usually call bicolored combinatorial 
plane trees just trees. 

Let n be the number of edges, and let :q,~2,-..  ,% (resp. flt,fl2, ". ,fiq) be the 
sequence of degrees of black (resp. white) vertices, ordered in decreasing manner. 

q Every edge joins a black vertex with a white one; therefore, ~'= 1 cq = ~j= 1 fir n. On 

Fig. 5. One tree, but two plane trees. 

Fig. 6. One plane tree, but two bicolored plane trees. 
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the other hand, the tree has p black vertices and q white vertices, hence p + q = n + 1. 
Thus, de,/3) is a pair of partitions of number n, having together a total of n + 1 parts. 
We call it the set o f  degrees of the tree, and say also that the tree is of type (~,/3).  The 
following simple lemma shows that the reciprocal statement also holds: 

Lemma. For any pair (~, /3) (~f partitions o f  number n having p and q parts respectively, 

such that p + q = n + 1, there exists at least one bicolored plane tree havin,q this pair as 

its set ~?f degrees. 

If we exchange black and white colors, the set of degrees (~, fl) will be replaced by 

(/3, ~.). Thus, we usually obtain the bicolored tree of another type. But in the case 
when ~ =/3 the type remains the same. For example, both trees shown in Fig. 6 have 
the same type ~3, 2, 1, 1; 3, 2, 1, 1 ). 

4. Geometry of plane trees 

The linear transformation z ~ cz + d mentioned in Section 2 may change the size of 
a tree and its position on the z-plane, but it does not change its geometric form. This 

fact, in combination with the Main Theorem, leads to a remarkable consequence. 
Ever)' plane tree has a unique and canonical geometric'.form. 

In Fig. 7 the reader will find several pictures representing the true geometric form of 
the corresponding plane trees. This page represents an excerpt from the catalog [4]. 
Our main software tool was MAPLE-V. 

5. Calculation of Shabat polynomials 

Let the type (:~,/3) = ~ 1 , ~ 2  . . . . .  ~ p ; / 3 1 , / 3 2  . . . . .  flq) of a tree by given; we also set 
[-cl, c2] = [0, 1]. Then in order to find the corresponding Shabat polynomial we need 
to find n + 2 complex numbers 2, al,a2, . . .  , a p ,  b l ,  b 2 . . . . .  bq such that we have 
simultaneously 

P(z) = ;t(z - a,)~'(z - a2) ~ ... (z - ap) ~p 

and 

P(z) - 1 = 2(z - bl)al(z --  b2) ~ . . . .  (z --  bq) fl'. 

In addition, all the values ai and bj should be different. The equalities between 
coefficients provide us with n algebraic equations (the main term being the same). Two 
more 'degrees of freedom' remain at our disposal, and we may use them in the way we 
find it convenient. We may fix the positions of any two points, or make some other 
choice that places a tree in an unambiguous position on the complex plane. 



52 J. B~trOma, A. Zt,onkin / Discrete Mathematics 153 (1996) 47-58 

)¢ mini  O~ X meucl 3 
V mini 0 V maxl 3 

12 <422;311111> 

°J 

]3 <422;221111> 

2 
( 
1 

14 <332;311111> 

/ 

]~ <332;221111> 

16 <.5111;41111> 

17 <S111;32111> 

lfTT"~ 

Fig. 7. Excerpt from the catalog [4]. 

This method, taken literally, is far too complicated. Many improvements of various 
levels of generality are given in [4]. See also Section 7. 

6. Fields of definition, Galois groups 

Let ~ be the field of algebraic numbers, i.e., the field of all (complex) roots of 
polynomials with rational coefficients. The Galois group F = Gal(A [Q) is the group of 
automorphisms of the field A. This group acts on the roots of polynomials with 
rational coefficients by permuting (some of) them. For a specific irreducible poly- 
nomialfwith rational coefficients, the Galois 9roup of f  is the factor-group of F by the 
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subgroup of those automorphisms that do not move elements of not only Q but also 
of its extension by roots off .  For an irreducible polynomial of degree n it is some 

subgroup of the symmetric group S,, that acts transitively on the roots o f f  
The previous section makes it clear that coefficients of Shabat polynomials could 

always be made algebraic numbers (if only we have not used our 'two degrees of 

freedom" properly to make some of the equations transcendental). They belong to 

some number.field, i.e., finite extension of the field Q of rational numbers by roots of 

some irreducible polynomial f The reader should not confuse Shabat polynomial with 
this latter polynomial: we repeat once more that we need po lynomia l f to  determine an 
algebraic number field to which the coefficients of Shabat polynomial P belong. 

Action of Galois group F, besides rational numbers, also conserves all algebraic 

relations with rational coefficients. Thus, acting on coq~icients of a Shabat poly- 

nomial, F transforms it into other Shabat polynomials. Therefore, the action ~ fF on 
plane trees is defined. The main goal of the theory is to understand the combinatorial  
and geometric nature of this action. For example, from the previous section it is clear 

that the type (~, fl) is an invariant of this action: trees belonging to the same orbit 
have the same type. A set of the trees of the same type is called a family. Each family is 

either an orbit of Galois group action, or a disjoint union of several orbits. 

As another combinatorial invariant we could mention the order of the symmetry of 

a tree; recall that a plane tree may have only a cyclic group of symmetries. 

The notion of a .field ~?f definition of a map or a tree is rather complicated and 
involves the Galois cohomology theory (see [12]). But in case of a tree it is just the 
smallest number field to which the coefficients of the corresponding Shabat poly- 
nomial belong. The field of definition is the same for the whole orbit. The Galois group 

of a particular orbit could also be defined as the group of automorphisms of the field 
of definition. 

7. Examples 

(A) Consider a plane tree of the type (3,2,2; 2,2, 1, 1, 1). Let us place the black 

vertex of degree 3 at z = 0: let two other black vertices be the roots of a quadratic 
polynomial z 2 - 2z + a (the coefficient - 2  in front ofz means that we place these two 

roots in such a way that the middle point of the segment joining them lies at z = 1). 
Thus, we may look for a Shabat polynomial having the form 

P(z) = z 3 ( z  2 - -  22" ~- a )  2 

(this means that we take the endpoint Cl of an image-segment equal to zero, and do 

not impose any conditions on c2). The derivative of P(z) is equal to 

P' (z )  = z2 ( z  2 --  2z  -[- a)(7z 2 -- 10z + 3a). 

Two white vertices of degree 2 are the roots of the last factor Q(z) = 7z 2 - 10z + 3a. 

These two points must satisfy two conditions: (1 ) they  must be distinct, thus 
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21a -- 25 ~ 0, and (2) the values of P(z) at them must be equal to each other. 

Compute the remainder after division of P(z) by Q(z): it is equal to Az + B, where 

16 
A = - ~ (21a - 25)(49a 2 - 476a + 400), 

196 
B - ~-g a(28a - 25)(7a - 10). 

Condition (2) leads to the equation A = 0, hence 

f (a)  = 49a 2 - 476a + 400 = 0, a = 4(34 ___ 6x/2i-). 

A priori it is difficult to decide what sign we should take, plus or minus. So let us take 
both; then we obtain both trees of the type (3,2,2; 2,2, 1, 1, 1), see Fig. 8. These two 
trees are conjugate to each other; they form an orbit of Galois group action, and their 

field of definition is Q ( , /~) .  
(B) For  some time the following question remained open: whether the set of  degrees 

and the order of  the symmetry group completely characterize the orbit of Galois group 

action on trees. We found that answer to this question is negative. Consider the set of 
degrees (4,2, 1; 2,2, 1, 1, 1). There are four plane trees of that type, and they are all 

asymmetric (via rotations), see Fig. 9. 
However, they do not compose a single orbit but split into two separate orbits. One 

orbit consists of the trees (A) and (B), with the field of definition Q(,,/~), the other one, 

of the trees (C) and (D), with the field of definition Q ( x / -  7). 
Other examples of the same kind were also found by Leila Schneps [10] and by 

Nikola'i Adrianov 1-13]. 
(C) The following example is very instructive. Consider the set of degrees (3, 2, 1, 1; 

3, 2, 1, 1). There are six plane trees of this type. Three of them are symmetric (with the 

Fig. 8. Pair of conjugate trees. 

(A) 

(B) (D) 

Fig. 9. Two orbits of Galois group. 
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symmetry of order 2), and form therefore a separate orbit of Galois group action 

(the field of definition being Q(3 2/~). But the field of definition of the other three 

(asymmetric) trees is not cubic but has degree six! The reason is that instead of three 

plane trees we must consider six bicolored plane trees with the same set of degrees (see 

Fig. 6, where two of these bicolored plane trees are shown), and they are all conjugate 

to each other. Thus, the right combinatorial structure corresponding to the algebraic 

one is that of a bicolored plane tree. 
(D) The following example was a consequence of our efforts to find a cubic orbit 

(i.e., an orbit with a cubic field of definition) with the cyclic Galois group. Let us 

consider a 'generic' case, when the set of degrees is (m, m, n, n, n, n, n; 7, 1, 1 . . . . .  1), 

with m and n positive and non-equal. The corresponding family contains three plane 

trees of diameter 4 having 2m + 5n edges, with the following cyclic orders of vertex 

degrees around the center: 

(m,m,n,n,n ,n ,n) ,  (m,n,m,n,n ,n ,n) ,  (m,n,n,m,n,n,n) .  

One of the trees is shown in Fig. 10 (with black and white colors reversed). 

Place the 'center' of the tree at z = 0; let the vertices of degree m be the roots of 
z z -  2z + a, and the vertices of degree n the roots of z S +  b4z4+ b3z3+ 

b2z 2 + blz  + bo. We are looking for a Shabat polynomial of the form 

P(z) = (z z - 2z + a)m(z 5 q- b4z 4 -1- b3 Z3 + b2 z2 + b l z  q- bo) n. 

Derivative P'(z), besides obvious roots, must have a root of multiplicity 6 at z -- 0. 

This leads to a system of equations on a and bi. Eliminating bi one after another from 

this system, we finally obtain the cubic equation on a: f (a )  = 0, where 

f (a)  = 15n3*a 3 - 90nZ(m + 3n)*a  2 + 60n(m + 3n)(m + 4n)*a 

- 8(m + 3n)(m + 4n)(m + 5n). 

Fig. 10. One of the three plane trees of the type (m, m, n, n, n, n, n; 7,1 . . . . .  1 ). 
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The discriminant of the po lynomia l fcou ld  be easily calculated (using MAPLE,  of 
course), and factorized: 

D( f )  = 518400n6(m + 3n)2(m + 4n)(2m + 3n)(2m + 5n) 2. 

It is well known that a Galois group for an irreducible cubic polynomial is equal to 

C3 (cyclic group of order 3) if its discriminant is a complete square, and to the 

symmetric group $3 otherwise. Therefore, to obtain an orbit with Galois group C3 we 

just need the polynomial f being irreducible, and (m + 4n) (2m + 3n) being a complete 

square. Degrees m = 37, n = 2 produce an example, the number of edge of the tree 
being equal to 84. Obviously, infinite series of examples could be generated likewise. 

(E) Let us treat in the same way another cubic family, that of the type (m, m, n, k; 

4, 1, 1 . . . .  , 1 ) ,  numbers m, n, k being all different. This family contains three trees of 
diameter 4, corresponding to the following cyclic orders of vertex degrees around the 

center: 

(m,m,n,k), (m,m,k,n), (m,n,m,k). 

Making similar calculations, we get 

O( f )  = -432m3nZkE(m + n)(m + k)(m + n + k)3(2m + n)2(2m + n + k) 2, 

where f is a polynomial generating the filed of definition of the orbit. 
The discriminant is negative, so this time it could not be a square. Let us ask 

another question: when is the field of definition a purely cubic.field, i.e., a field of the 
form Q(,,~) with some integer a? It is known that to have such a field, the dis- 

criminant of f must be equal to 

D ( f )  = - 3 * (complete square). 

Thus, the product m(m + n) (m + k) (m + n + k) must be a square. To make it a square 

it is sufficient to have, for example, 

m = x 2, m + n = y2, m + k = - 72, m + n + k = t 2. 

These equations are not independent: we have 

X 2 _.1._ t 2 ---= y 2  _.}_ Z 2 = 2m + n + k. 

Thus, the number of edges 2m + n + k must have two different representations as a sum 
of two squares. 

In the whole history of number theory it is difficult to find a more classic problem 
than that of representation of a number as a sum of two squares. The main result was 
announced by Fermat  in a letter to Mersenne in 1642 and proved by Euler 100 years 
later: every prime of the form 4k + 1 has a unique representation as a sum of two 
squares; all the primes of the form 4k + 3 do not have such a representation. It could 
be readily seen that a product of two different numbers representable as a sum of two 
squares has a non-unique representation (this fact was already known to Diophantus). 
Infinite series of examples could be constructed in this way. For  example, take the 



J. Bdtrbma, A. Zvonkin ~Discrete Mathematics 153 (1996) 4 ~ 5 8 57 

number of edges equal to 5 * 13 = 65. Then, 65 = 1 + 64 = 16 + 49, and we may take 

m =  l , n = 1 5 ,  k = 4 8 .  

8. General conjecture concerning discriminants 

The problem of computing the discriminant of a field of definition of a 'Grothen- 

dieck dessin' (or a closely connected quantity, the discriminant of an irreducible 
polynomial whose roots generate the field), and the problem of understanding its 
combinatorial nature (if any), were always considered as very important. Shabat in his 

letter [13] called it 'the most interesting problem in the domain for the time being'. He 
has also remarked that for all known examples the number of edges of a tree is always 
among the factors of the discriminant, and wrote: 'The others are quite mysterious, 
and understanding them is definitely necessary for further progress'. 

We have computed the discriminants for more than 20 infinite families of trees of 
diameter 4. And in all these cases the discriminant of the polynomial f in question 
is completely split into the linear combinations of vertex degrees with integral 
coefficients. 

More accurately, the following observation proved to be true in all cases considered 
up to now: 

Conjecture. Let, for a tree of diameter 4, the set of white vertices have kl vertices of 
degree ma . . . . .  kr vertices of degree mr, the central (black) vertex thus having the 
degree K = kl + ... + kr. Then the discriminant in question is split into factors of the 
form 

a i m 1  + "'" + armr, 

where ai are integers, and 0 ~< ai ~< kl, i =  1 . . . . .  r. Besides, the discriminant has a 
numeric factor, all of whose prime divisors are less than K. 

One of the consequences of this splitting is that the discriminant does not have 
prime factors that are bigger than the number k l m l  + . . .  + krmr, which is the number 
of edges of the tree. The latter consequence is important for an (eventual) reduction of 
the algebraic problem to the fields of positive characteristic. 

We conjecture that splitting of this kind is valid for all trees of diameter 4. 
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