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Galois Orbits of Plane Trees:
A Case Study

A. Zvonkin
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A cubic family

We consider the family of trees

of diameter 4;
with the central vertex of valency 7;

with the 7 vertices around the center having the valencies m, m and
n,n,n,n,n, with m and n being different positive integers;

and with all other vertices being leaves (i.e. of valency 1).

The number of edges is thus equal to N = 2m + 5n. See Example 5.3 in [2].
There are 3 plane trees with this set of valencies, therefore in general we
must get a cubic field of definition. Indeed, we look for a Shabat polynomial

of the form
P(z) = p1(2)"pa(2)",
where
p(z)=22—z2+a
and

p2(2) = 2° + byz* + b32® 4+ by2? + byz + by.

We compute the derivative P'(z), which is equal to

P'(z) = p2)™ 'p2(2)" 7' Q(2),
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where (z) is a polynomial of degree 6,
Q(z)=2m+5m)+....

Equating
Q(z) = (2m + 5n)25,

that is, making all the coeffitients of () but first equal to zero, we get a system
of 6 equations on 6 unknowns a, by, ..., by. Eliminating step by step all the
b;, we finally get a cubic equation on a:

15n3a3 — 45n2(m + 3n)a? + 15n(m + 3n)(m + 4n)a — (m + 3n)(m + 4n)(m + 5n) = 0. (1)

(The equation given in Example 5.3 [2] is written for the parameter 2a
instead of a.)

The roots of the last equation usually generate a cubic number field. But
sometimes the equation might have one or even three rational roots; then
the corresponding family of trees splits into two or three Galois orbits. This
is exactly the situation we want to study.

Problem: Find numbers m and n such that equation (1) would have a
rational root.

2 Reduction of the problem

First of all, we may note that the polynomial (1) is homogenious in m and
n. Hence one may divide it by n® and introduce a new variable

b=,
n
thus having
f(a,b) = 15a® — 45a%(b+ 3) + 15a(b+ 3)(b+4) — (b+ 3)(b+4)(b+5) = 0. (2)

We may reformulate our problem as follows:



Problem (reformulation): Find all the rational points (a, b) on the cubic
f(a,b) = 0, satisfying two additional conditions: (1) b # 1, and (2) b > 0.

The first condition is very easy to satisfy: the substitution of b = 1
reduces the equation to a® — 12a? + 20a — 8 = 0, which does not have any
rational roots. The second condition is rather nasty and causes some trouble.

Anyway, we are in front of a problem of finding the rational points on a
plane cubic. We may mention two basic facts:

(A) Any plane cubic reduces to an elliptic curve (see, for example, [1] or
any other source).

(B) The problem of finding the rational points on an elliptic curve is
more than classic (see, for example, [3]), but it is also notoriously difficult,
and many questions remain open.

An algorithm of reducing a cubic to one of the standard forms is described
in [1], Section 7.4.2. To start with, it needs at least one rational point on the
cubic. One may use one of the following:

(a, b) = (0’ —3), (O’ _4)’ (0’ _5)7 (17 0); (3)
in our computations we have used the point (1,0).

Then, after a series of rather tedious transformations involving cumber-
some fractions we finally get a surprisingly simple elliptic curve equivalent
to (2):

y® = 2° — 24757 — 5850. (4)

Some additional information concerning this curve may be useful. First,
the coefficients are 2475 = 32-52-11 and 5850 = 2-32-52-13. The polynomial

P(z) = 2 — 24752 — 5850
does not have rational roots. It has three real roots:
x1 = —48.52254620, xo = —2.36900822, x5 = 50.89155442.
The discriminant of P is equal to
D = 59719680000 = 2'7 . 35 . 54, (5)
The J-invariant of the curve is equal to
898425  3°-5%-11°

512 29
Now starts the hunting for rational points.

J=
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3 Rational points

In looking for rational points we have used three methods:

e the Nagell-Lutz algorithm for enumerating the torsion points (see [1],
Theorem 7.5.4);

e transformation of the points (3) to new coordinates (and also taking
their multiples);

e 3 trial and error method.

The results are summed up below.

3.1 Torsion points

The polynomial P(x) not having rational roots, there are no rational points
of order 2.

Recall the Nagell-Lutz theorem mentioned above: all rational points of
finite order k¥ > 2 have integral coordinates z and y, and y? divides the
discriminant D, given by (5). This gives a finite number of possibilities to
check, and we come out with two points of order 3, namely,

Q = (75,480) and — Q = (75, —480).
The torsion group is isomorphic to Z/3Z.

3.2 Rank

The point
P =(-21,192)

is not of a finite order, as, for example, the point 3P has fractional coor-
dinates. Thus, the rank of the curve is positive, and the curve contains
infinitely many rational points.

All the other rational points found up to now turn out to be of the form
pP+qQ, with p € Z, g € Z/3Z. Tt seems reasonable to believe that the rank
of the curve is 1, and the generator of the non-torsion part is P.

(We remind the reader that there are no systematic procedures known to
determine the rank of an elliptic curve, though in particular cases the results
may be found by means of various clever tricks; see [3].)
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4 Positivity of b

To each point (z,y) on the curve (4) there corresponds a unique point (a, b)
on the curve (2). The parameter a does not interest us very much. As to b,
it may be found by the following formula:

11122 — 6090z — 29385 — 32y + y
23 — 130522 + 63675z + 299925

An elementary, though rather tedious analysis of this expression produces the
domains of its positivity on the real plane (z,y); they are shaded in Figure 1.

There are three segments of the real part of the curve (4) that lie inside
the positive regions. Let ¢y, c9, c3 be the roots of the polynomial

b =30

Q(x) = 7* — 13052 + 63675z + 299925,
their numerical values being
¢ = —4.32551841, ¢ = 55.29240881, c¢3 = 1254.033109.
Let dy, ds be the roots of the polynomial
q(z) = 92° — 5822 — 2879,

ie.,
97 + 64v/3
dipg=——7—"7,
3
their numerical values being

dy = —4.61708390, dy = 69.28375056.

Then the segments of the curve (4) which produce positive values of b are
the following:

dy<zx<cy, y<Oo; (6)
o < <dy, y>0; (7)
x>c3 y<O0. (8)

Anyway, the rank of the curve being positive, rational points are dense in
its real part, and hence infintely many examples may be found, in which the
“combinatorially cubic” family of trees splits into one or even three Galois
orbits without any “visible” reason.



5 Computations

The “smallest” example found is the point

8135 486280)

AP+ Q= (22, 22
+e (121’ 1331

Here 822 = 67.39669421, thus the point itself belongs to segment (7). The

121
corresponding value of b is %, therefore the vertex degrees are m = 33 and

n = 124.
The next point is
4P = (12219, —1350672),

which obviously belongs to segment (8). It gives us

2008145
T 1653242°

Thus, the vertex degrees of the trees in question are
m = 2008145, n = 1653242.

We have verified that equation (1) indeed has a rational root.
It is interesting to mention that the number of edges is

N = 2m + 5n = 12282500 = 22 . 5% . 173,

while
m =15-401629, and n = 2-826621.

In the same manner, we computed all the points pP + ¢@, |p| < 25,
g = 0,1,2, i.e., the total of over 150 rational points on the curve. Among
them, 11 points belong to one of the regions (6), (7) or (8). (In fact, segment
(6) is so small that we did not find points belonging to it even for greater
values of p.) Here is the list of resulting vertex degrees m and n and numbers
of edges N:

p=—4, ¢ =1: segment (7)
m = 33

n =124

N=68=2-T7°



p =4, ¢ = 0: segment (8)
m = 2008145

n = 1653242

N = 12282500 = 22 - 5*. 173

p=—8, ¢ =1: segment (7)

m = 1317156026567

n = 649800344821

N = 5883313777239 = 3 - 125173

p =28, ¢ = 0: segment (8)

m = 487834953714776556005

n = 104793834699948131134

N = 1499639080929293767680 = 21 . 37 . 5. 73 . 73093

p=—12, ¢ = 1: segment (7)

m = 1999297558019926898176821908516

n = 208841813498019535906845150263

N = 5042804183529951475887869568347 = 54833 - 31275613

p =12, ¢ = 0: segment (8)

m = 4378509451025751760614210402011206419586020
n = 67325256969855198242822530593450569436743

N =5-25573-1356013 - 3520433

p =14, ¢ = 0: segment (7)

m = 736968638710363146558449063198029837892542443037937548205
n = 42105267022976090538714507833166908540215558127798804593
N =3%.5*.17.73%.191% - 61633 - 2201751073

p = —18, ¢ = 1: segment (8)
m = 30238910338122081257668268088918008382717477549298054578921167146438804741
n = 4516545280972262137491008912167324424939495969666716640564907223707253558

N =23.413-2503% - 212580566684382812533



p =18, ¢ = 0: segment (7)
N =5-167873-9274973 - 490475172 - 28934805688372

p=—22, ¢ =1: segment (8)
N =2-75.2569422473 - 16732317356047348950926686513

p =22, ¢ = 0: segment (7)
N = 22.5.2584416196841212744132447585056811154400766793.

In the last three examples we do not give the values of m and n anymore,
because they do not fit into the A4 page format even with the smallest font.
It is interesting to note that the number of edges N is, up to a small
factor, a cube. Such a prime as

258441619684121274413244758505681115440076679

may well show up “by chance”. But to find it by chance three times is highly
unprobable.
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