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Abstract

A map is at the same time a group. To represent a map (that
is, a graph drawn on the sphere or on another surface) we usually
use a pair of permutations on the set of the “ends” of edges. These
permutations generate a group which we call a cartographic group.
The main motivation for the study of the cartographic group is the
so-called theory of “dessins d’enfants” of Grothendieck, which relates
the theory of maps to Galois theory [24].

In the present paper we address the questions of identifying the
cartographic group for a given map, and of constructing the maps
with a given cartographic group.

1 Maps and cartographic groups

The same graph can be drawn in different topological ways, as is shown in
Figure 1 (we consider these graphs as drawn on the sphere).

Figure 1: One graph, but two maps

The combinatorial structure that reflects not only the graph properties
but also those of its embedding is called a map.
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Definition 1.1 A map is a connected graph (loops and multiple edges
are allowed) which is “drawn” on (embedded into) a compact oriented two-
dimensional surface in such a way that:

1. the edges do not intersect;

2. if we “cut” the surface along the edges, we get a disjoint union of sets
which are homeomorphic to an open disk (these sets are called faces of
the map).

In the example above the left-hand map has two faces, of degree 5 (the
outer face) and 1, while the right-hand map has both faces of degree 3.

The additional information one needs to represent a map is the rotational
order of edges around each vertex. Consider the set B of the “ends of edges”
(each edge has two ends, hence the number of elements in B is twice the
number of edges). Let a be the permutation on B that transposes the ends
of each edge; let o be the permutation that rotates the ends adjacent to each
vertex counterclockwise (we use the fact that the surface on which the map
is drawn is oriented).

The permutations a and ¢ must satisfy the following conditions:

1. All the cycles of « have the length 2, or, in other words, « is an invo-
lution without fixed points (this condition means that each edge has
exactly two ends).

2. The permutation group G = <«, 0> generated by « and o acts tran-
sitively on B (this condition means that the graph is connected).

The example that follows was a starting point for our interest in the
combinatorics of the cartographic group. It was presented by Giinter Malle in
his talk on the conference “Dessins d’enfants (Cartes cellulaires de Riemann)”
held at Luminy in April 1993.

Example 1.2 Consider the map with 6 edges drawn in Figure 2. We number
the ends of edges by 1,2,...,12 in an arbitrary way, for example as in the
figure. Then

a=(1,2)(3,4)(5,6)(7,8)(9,10)(11, 12)

and
o=(1,6,2)(4,11,8)(5,7,9).
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Figure 2: Example of G. Malle

The cycle type of o is 3313, which corresponds to the vertex degrees. The faces
of the map can be reconstructed as the cycles of the permutation ¢ = o™ !
(we multiply the permutations from left to right: this notation corresponds
to that used in MAPLE group package). In our example,

¢ =(1,6,9,10,7,11,12,4,3,8,5).

The cycle type of this permutation is 11'1!, which corresponds to the face
degrees. The pair of permutations («, ¢) corresponds to the map dual to that
of (o, 0). If we remove the condition of o being an involution without fixed
points, we get the definition of a hypermap; the hyperedges of a hypermap
may have any number of ends. For details on this approach to the theory of
maps and hypermaps see [12].

The definition of the cartographic group was “almost given” above.

Definition 1.3 The cartographic group of a map is the permutation group
G = <a,0> generated by the permutations o and 0. We also say that the
map represents its cartographic group.

Remark 1.4 In some publications this group is called effective cartographic
group.

Remark 1.5 A map and its dual obviously represent the same group, be-
cause ¢ = ao~' implies that <a,0> = <a, ¢>. For a planar map («,0),
the map axially symmetric to it is described by the pair of permutations
(o, 071), which again gives us the same group.
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Remark 1.6 For a bipartite map we may also consider a simpler object, its
monodromy group. This is a permutation group on the set of edges generated
by rotations of the edges around “black” vertices and around “white” ones.
Note that each tree is bipartite.

Though the above combinatorial definition of a map is well-known, to
the best of our knowledge very little attention has been paid to the study of
the cartographic group. For the specialists in the theory of maps this group
was always a kind of a “transparent object” through which they used to
look directly at the maps. As for the group theorists, quite a lot of research
was undertaken concerning the finite groups generated by two elements (see,
for example, [6], [7], [20]); but an interest in maps as a specific object of
study is very rarely manifested. There is a vast literature dedicated to the
groups of automorphisms of maps; but this object is very different from the
cartographic group.

The new interest in the structure of the cartographic group and its re-
lations to the structure of the corresponding map arose in connection with
the theory of “dessins d’enfants”, where this group is supposed to play a
fundamental role (see [24]).

2 Small maps

How do we recognize the cartographic group for a given map? For small
maps, we may use the tables of transitive permutation groups given in [8].

Example 2.1 Let us consider the maps in Figure 1. It is a matter of a
second for MAPLE to compute the order of the groups: for the left-hand
map it is 120, for the right-hand one it is 24. Looking through the table [8]
we find out that there is only one transitive subgroup of Sg of order 120.
This is the group PG Lsy(5) (as an abstract group it is isomorphic to Ss).

Example 2.2 As for the transitive subgroups of Sg of order 24, there are
three of them, not conjugate to each other in Sg. The following additional
information is helpful in order to recognize the “right” group: the cycle types
of the permutations «, o, ¢ are 23, 412 and 32. Looking through the cycle
type distribution tables of the same paper [8] we find out that only one of
the subgroups of order 24 has the elements of all the three cycle types. It is
the group S, together with its natural action on 6 cyclic orders of 4 elements.
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Remark 2.3 (G. Jones) The latter group is also isomorphic to the rotation
group of an octahedron, permuting its six vertices. Indeed, one can “see” this
from Figure 1, where the second map is just the quotient of the octahedron
by the rotation group of order 4 fixing a vertex.

Example 2.4 The following map presents a “difficult” case.

O=<<

Figure 3: A map representing PSLy(7)

The order of the group is 168. There are two permutation groups of degree
8 and of order 168: one is PSLy(7), the other one is the group of semi-affine
transformations of the field GF(8). Unfortunately, both of them contain
elements of the cycle types 2%, 3212 and 7'1!. In order to show that the
correct answer is PSLy(7) we need a new method. We used the method
presented below in the study of the group M;5. Roughly speaking, it consists
in starting from the group, not from the map. Another proof was given by
G. Jones (private communication).

Example 2.5 Consider the map of Figure 2. The order of the group is
95040. This case would be an easy one, had we a table of transitive groups
of degree 12 (there are about 300 of them). In fact, it is not difficult to prove
that there exists only one (up to a conjugation) permutation group of degree
12 and of order 95040, namely, the Mathieu group M;,. But we would like
to maintain the purely experimental nature of this work.

3 The group M,

Five Mathieu groups, traditionally denoted as My1, Mo, Mos, Mos, Moy, were
constructed by Emile Mathieu in the last century [21], [22]. For more than
100 years they were the only sporadic simple finite groups known; nowadays
they stand at the beginning of the famous list of 26 sporadic finite groups



(see [14], [11]). For a more complete bibliography and more substantial
information see [10].

The group Mi,, as all the other Mathieu groups, has several dozens of
equivalent definitions (see, for example, [10], [11]). We have chosen the one
which is technically convenient for us, namely, when one of the generators is
an involution without fixed points.

Definition 3.1 The group M, is the permutation group of degree 12 gen-
erated by the following three permutations:

a = (1,2)(3,4)(5,6)(7,8)(9,10)(11,12),
8 = (1,3,5,7,9,6,11,8,10,12,4),
v = (4,8,5,11)(6,7,12,9)

(see [14], section 2.2; the numeration of elements is changed).

The order of the group M is 95040 = 26 x33x5x 11 = 12x11x10x9x8.
It is 5-transitive, i.e., it can take any 5 elements (out of 12) to any other 5
elements. It is simple, i.e., it does not have any proper normal subgroups.

Proposition 3.2 The group <a, 3,7> of Definition 3.1 coincides with the
group <o, 0>, the cartographic group of the map of Figure 2.

Proof

Script started on Wed Jul 27 16:53:25 1994
bash$ maple
Maple V Release 2 (Universite de Bordeaux I)
I\ |/1_. Copyright (c) 1981-1992 by the University of Waterloo.
\ MAPLE / All rights reserved. MAPLE is a registered trademark of
< > Waterloo Maple Software.
| Type 7 for help.
> with(group);

[DerivedS, LCS, NormalClosure, RandElement, Sylow, areconjugate, center,
centralizer, core, cosets, cosrep, derived, groupmember, grouporder,
inter, invperm, isabelian, isnormal, issubgroup, mulperms, normalizer,
orbit, permrep, pres]

> alpha:=[[1,2]1,[3,4],[5,6],[7,8],[9,10],[11,12]1];
alpha := [[1, 2], [3, 41, [5, 6], [7, 81, [9, 10], [11, 12]]
> beta:=[[1,3,5,7,9,6,11,8,10,12,4]1];
beta := [[1, 3, 5, 7, 9, 6, 11, 8, 10, 12, 4]]



> gamma:=[[4,8,5,111,[6,7,12,911;
gamma := [[4, 8, 5, 111, [6, 7, 12, 9]]
> M:=permgroup(12,{alpha,beta,gamma});
M := permgroup(12,
{Cl1, 21, [3, 41, [5, 61, [7, 81, [9, 101, [11, 1211,
[C1, 3, 5,7, 9, 6, 11, 8, 10, 12, 411, [[4, 8, 5, 11], [6, 7, 12, 911}
)
> grouporder (M) ;
95040
> sigma:=[[1,6,2],[4,11,8]1,[5,7,91];
sigma := [[1, 6, 2], [4, 11, 81, [5, 7, 9]]
> groupmember(sigma,M);
true
> G:=permgroup(12,{alpha,sigmal});
G := permgroup(12, {[[1, 2], [3, 41, [5, 61, [7, 8], [9, 101, [11, 12]],

(cs, 6, 21, (4, 11, 81, [5, 7, 911} )
> grouporder(G) ;
95040
> quit
bytes used=1119364, alloc=786288, time=5.45
bash$ exit
exit

script done on Wed Jul 27 17:11:03 1994

In this proof we first define the group M, = <a, 3,7> according to
Definition 3.1 (and verify that its order is equal to 95040, just in case).
Then, using the groupmember function we verify that o € Mjs; hence the
group G = < a,0 > is a certain subgroup of Mis. Finally, the fact that
|G |=| M12|= 95040 implies that the group G coincides with M.

Remark 3.3 As is shown in [28], the least possible genus of a map that has
My as its group of automorphisms is 3169. This remark is made in order
to underline once more the difference between the notions of cartographic
group and group of automorphisms.

The most difficult part of the proof is hidden in the choice of the permu-
tation 0. We may agree to label the ends of edges by successive numbers; i.e.,
to take oo = (1,2)(3,4)(5,6)(7,8)(9,10)(11,12). But even after this conven-
tion there still exist 6! x 2¢ = 46080 possibilities of different ends labellings,
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and hence the choice of ¢ is far from being unique. Among 46080 possible
choices of o the majority leads not to the group M, as it is defined in Defi-
nition 3.1 but to some of its conjugate copies inside Si5. In such a case the
groupmember function will reply false and our proof will collapse. So the
question is, how to find an appropriate candidate for 7

What we suggest is trying a random element o € M;, (the MAPLE func-
tion RandElement generates random elements of the permutation groups).
This method, strange as it may seem, produces unexpectedly good results.

Given the permutation a as above, how many elements o € M, are
there such that <a,o0> = M;»? The complete search was carried out by
N. Hanusse; it shows that there are 60960 such elements, i.e., more than
64%. Among them plane maps occur 12000 times, maps of genus 1 occur
29760 times, and maps of genus 2 occur 19200 times. But this huge work
was undertaken only in order to get the final approval of the previously
obtained results: in 20 minutes of computation we examined 500 randomly
chosen elements of Mj, and obtained more than 300 maps (in fact, twice as
much, because together with each o we also considered ¢ = ao~! and the
corresponding map). Thus we established the complete list of plane maps
having M, as the cartographic group. This list consists of 50 maps. Here is
a small sample of them:

oo o B

Figure 4: A sample of maps representing M,

4 M, and others

It goes without saying that the method described above works for many other
groups (for example, for the group PSLy(7) mentioned in Section 2). Below
we give two “portraits” of the Mathieu group M,,, which is, according to
J. H. Conway [11], “the most remarkable finite group”. There exist many
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other examples, but the list for My, is not yet complete. See also [15]. (The
least genus of a map with the symmetry group May is 10200961, see [9].)

4 N

N J

Figure 5: Two maps representing Moy

The groups M;; and Ms3 are generated as monodromy groups of bicolored
plane trees in [1]. There are exactly 2 trees (with 11 edges) for M, and
exactly 4 trees (with 23 edges) for Mos.

Remark 4.1 The possibility of generating finite groups by only two elements
was studied by many authors; see, for example, [27], [3] and [20]. In [20] it
is shown that every non-abelian finite simple group can be generated by two
elements, one of which has order 2, so such a group is isomorphic to the
cartographic group of a map.

5 Theory of “dessins d’enfant”

To any map of genus g there corresponds a Riemann surface X of the same
genus together with a meromorphic function f : X — C which has only
3 critical values, namely, 0, 1 and oo, and all pre-images of 1 are critical
points of order 2. The map itself can be recovered as the pre-image of the
segment [1,00] C C. The pair (X, f) is called a (pure) Belyi pair. For a
given map, the corresponding Belyi pair is unique, up to an isomorphism of
the Riemann surface X. In the planar case X = C, hence only one element
of the pair is to be found, the Bely: function f, which in this case is rational.
This correspondence was introduced in the famous paper [4] in connection



with Galois theory. The relations to maps and cartographic groups were
indicated by Grothendieck [16]. For the later development of the theory see,
for example, [25], [5], [24], [26].

Both X and f are defined over the field @ of algebraic numbers. In a
naive language this means that “their coefficients are algebraic numbers”. Let
I' = Gal(Q| Q) be the absolute Galois group, i.e., the group of automorphisms
of @. By acting on (X, f) this group acts also on maps. The action is faithful
(14).

The main interest of the theory is to find combinatorial invariants of this
action. Some of the invariants are rather simple. For example, the set of
degrees of the vertices and faces of a map is one of such invariants; another
one is the group of automorphisms of a map. The cartographic group is one
of the most powerful invariants of the Galois group action (the theorem that
it is really an invariant is proved in [18]).

Computing a Belyi pair corresponding to a given map is sometimes an
extremely difficult task, incomparable with that of computing, say, the or-
der of its cartographic group. This may provide us with the information
inaccessible by other means.

Example 5.1 Consider the family of plane maps with the vertex degrees
6, 3, 2, 1, and the face degrees also 6, 3, 2, 1. There are 18 maps with this set
of degrees. Computation of the corresponding Belyi functions proved to be
incredibly difficult (see [19]). It took us several months of efforts and became
possible only after N. Magot developed an interface between MAPLE and
GB (the latter is a specialized package to compute Grébner bases). The
results show that the set of 18 maps splits into three Galois orbits, of size 4,
6 and 8 respectively.

But it is only a matter of minutes to find out that the 4 maps of the first
orbit have a solvable group of order 648 as their cartographic group; the 6
maps of the second orbit have cartographic group Ajs; and the 8 maps of
the remaining orbit have cartographic group Mi,. Thus the splitting of this
set of maps into at least three orbits could be easily predicted on the basis
of the Galois invariance of the cartographic group.

Example 5.2 There are some hints that the relations of cartographic groups
to Galois theory are even closer than that. In the example of G. Malle
considered above, the set of vertex-face degrees is 3, 3, 3, 1, 1, 1 for vertices
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and 11, 1 for faces. There are exactly two maps having this set of degrees.
Hence the field of definition (i.e. the field to which belong all the coefficients
of Belyi function) must be quadratic. We may even guess that it is an
imaginary quadratic field, because one of the maps is axially symmetric to
the other, so Galois action must coincide with the complex conjugation. But
to find the field itself we must undertake huge computations. They were
carried out by N. Magot. The corresponding Belyi function looks as follows:

Kz

fz) = (22 =22+ az+0)3(B3 +c2 +dz+e)

where

. 16192 10880
301327047" " 903981141°
107 + 74/=11
a«a = ———
186
, 13, 5
fr —a -
567" T 1701
17
c = ——
9’
q = 23, %6
- 7T 57
_ 1573 605
~ 67 YT 1701

If one takes f(z) — 1, its numerator is of the form —B(2)?, where

1
B(z) = 2°+7[(10c=8)2" + (5a + 9d — Tc)2" +

(2b + 4ac + 8e — 6d)2* + (3ad + be — 5e)2* + 2aez — be).

We see that the field in question is @Q(1/—11). Now, if we look into the
character tables of the groups Mj; and M, (see [10]), we will see that all the
entries of both tables belong to the field @(1/—11).

There exists one more quadratic orbit with the cartographic group M,
its set of degrees being 4, 4, 1, 1, 1, 1 for vertices and 11, 1 for faces (see

the right-most picture in Figure 4). The similar computations show that the
field of definition of this orbit is once again @Q(+/—11).
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For the pair of trees with 11 edges and with monodromy group My,
mentioned in the previous section, the computations are much more diffi-
cult. They were carried out by Yu. Matiyasevich by means of the techniques
of LLL-algorithm first proposed in [13]. Some of the coefficients of Shabat
polynomial (a simplified version of Belyi functions for trees) have up to 50
digits. But the field of definition is once more @(v/—11)!

We know nothing about the underlying mechanism that leads to these
results.
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