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Abstract

Let R,S ∈ C [x] be two coprime polynomials of the same degree with
prescribed multiplicities of their roots. A classical problem of number
theory actively studied during the last half-century is, what could be the
minimum degree of the difference T = R − S. The theory of dessins
d’enfants implies that such a minimum is attained if and only if the ra-
tional function f = R/T is a Belyi function for a bicolored plane map
all of whose faces except the outer one are of degree 1. In [16], [17] such
maps are called weighted trees since they can be conveniently represented
by plane trees whose edges are endowed with positive integral weights.

It is well known that the absolute Galois group (the automorphism
group of the field Q of algebraic numbers) acts on dessins. An impor-
tant invariant of this action is the edge rotation group, which is also the
monodromy group of a ramified covering corresponding to the Belyi func-
tion. In this paper we classify all weighted trees with primitive edge ro-
tation groups. There are, up to the color exchange, 184 such trees, which
are subdivided into (at least) 85 Galois orbits and generate 34 primitive
groups (the highest degree is 32). This result may also be considered as
a contribution to the classification of covering of genus zero with prim-
itive monodromy groups in the framework of the Guralnick–Thompson
conjecture (see [8], [7]).

1 Preliminaries

The paper consists of two parts. In the first part, we provide a motivation, basic
definitions, and a proof of the main result. The second part contains tables with
the data describing the dessins and the groups which make up our classification.
The tables are followed by figures.
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1.1 Motivation

Let α, β be two partitions of an integer n, α = (α1, . . . , αr), β = (β1, . . . , βs),
and let R,S ∈ C [x] be two coprime polynomials of degree n having the following
factorization pattern:

R(x) =

r∏
i=1

(x− ai)αi , S(x) =

s∏
j=1

(x− bj)βj . (1)

In these expressions we consider the multiplicities αi and βj , i = 1, 2, . . . , r,
j = 1, 2, . . . , s, as being given, while the roots ai and bj are not fixed, though
they must all be distinct. Denote T = R−S. The question is, what could be the
minimum possible degree of T? This question is a far-reaching generalization of
the question raised in 1965 in [4], what is the minimum degree of the difference
A3 −B2 (when this difference is not identically zero)?

Assumption 1 (Conditions on α and β) We assume that α and β satisfy
the following conditions:

• the greatest common divisor of the numbers α1, . . . , αr, β1, . . . , βs is 1;
• r + s ≤ n+ 1.

The case of partitions α, β not satisfying the above conditions can easily be
reduced to this case (see [16]). In 1995, Zannier [19] proved the following:

Theorem 2 (Zannier’s bound) Under the conditions of Assumption 1, the
following statements hold:

1. deg T ≥ (n+ 1)− (r + s).
2. This bound is always attained, whatever are α and β.

The theory of dessins d’enfants (see, for example, Ch. 2 of [12] or other
papers in this volume) implies the following:

Proposition 3 (Dessins d’enfants) The degree t = deg T attains the mini-
mum value t = (n+ 1)− (r+ s) if and only if the rational function f = R/T is
a Belyi function for a bicolored plane map which has:

• n edges;
• r black vertices of degrees α1, . . . , αr;
• s white vertices of degrees β1, . . . , βs;
• all its faces except the outer one are of degree 1, where the face degree is

defined as half the number of surrounding edges;
• the number of the faces of degree 1 is t = (n+ 1)− (r + s).

2



Notice that, according to the Euler formula, the number of faces of a map
with n edges and r + s vertices is equal to t + 1, where t = (n + 1) − (r + s).
Thus, the face degree partition has a hook form:

γ = (1, . . . , 1︸ ︷︷ ︸
t times

, n− t) = 1t(n− t)1 .

Definition 4 (Passport) We call the triple of partitions (α, β, γ) the passport
of the corresponding map. The set of maps with a given passport is called
combinatorial orbit.

Proposition 3 explains the special interest of maps with the “inner” faces of
degree 1. Number theorists are especially interested in the arithmetic nature of
the coefficients of the polynomials R,S, T : for example, when these coefficients
are rational? See, in this respect, [3] and the references therein. It is well known
that in general the coefficients of Belyi functions are algebraic numbers, and the
absolute Galois group Γ = Aut(Q|Q) (the automorphism group of the field Q
of algebraic numbers) acts on dessins. We return to this question in Sect. 1.4.
One of the most important invariants of this action is the edge rotation group,
see Sect. 1.3. This fact explains our interest in these groups.

1.2 Maps with inner faces of degree 1 and weighted trees

A typical bicolored map with all its faces except the outer one being of degree 1
looks like in Fig. 1, left. Such maps have an obvious tree-like form. It is often
convenient to represent them as weighted trees, that is, bicolored plane trees
whose edges are endowed with positive integral weights, as is shown in Fig. 1,
right. The degree of a vertex in such a tree is defined as the sum of the weights
of the edges incident to this vertex.

5
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2

Figure 1: The passage from a map with all its inner faces being of degree 1, to a
weighted tree. The weights which are not explicitly indicated are equal to 1; the edges
of the weight bigger than 1 are drawn thick.

In this paper we do not use this tree-like structure in any significant way.
Nevertheless, we mention this model for the following reasons. First, the notion
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of a weighted tree seems to be quite natural and certainly deserves to be studied
per se. Second, this model is actively used in other publications devoted to the
same subject, see, for example, [16], [17]. And, third, when the number of faces
of degree 1 is zero we get an ordinary tree; we will often meet ordinary trees in
this paper.

This is why, in what follows we often call the maps we study here either
maps, or weighted trees, or just trees for short.

1.3 Edge rotation groups

Definition 5 (Edge rotation group) Label the n edges of a bicolored map
by numbers from 1 to n, and write down two permutations a and b as follows.
The cycles of a indicate the cyclic order of edges, in the counter-clockwise di-
rection, around black vertices, and the cycles of b indicate the cyclic order of
edges, in the counter-clockwise direction, around white vertices. Then the edge
rotation group of the map in question is the permutation group G = 〈a, b〉 of
degree n. This group is defined up to a conjugacy inside Sn.

Note the following properties of the edge rotation group.

• The group is transitive since the map is connected.
• The cycle structures of a and b are, respectively, α and β.
• The faces of the map are determined by the cycles of the permutation
c = (ab)−1 (so that abc = 1). For a weighted tree, the cycle structure of c
has the form γ = 1t(n− t)1.

• The edge rotation group is in fact the monodromy group of the ramified
covering of the sphere realized by the Belyi function corresponding to the
map in question.

Example 6 (Labeling of a map) Fig. 2 shows the same map as in Fig. 1,
with its edges labeled by numbers from 1 to 18. The corresponding permutations
are

a = (2, 9, 12, 13, 3)(4, 6)(5, 18, 17, 16, 15)(8, 14)(10, 11),

b = (1, 10, 11, 9)(3, 13, 12, 8, 14, 7, 6)(4, 5, 15, 16, 17, 18),

c = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10).

Notice that the only “long” cycle of the permutation c can be read out by going
around the outer face of the map; in order to obtain this result one must always
put the label of an edge on its left side while going from black to white.

Representing bicolored maps as triples of permutations (a, b, c) such that
abc = 1 we may introduce two braid operations:

σ1 : (a, b, c)→ (b, b−1ab, c), σ2 : (a, b, c)→ (a, c, c−1bc).
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Figure 2: A bicolored map with labeled edges.

Notice that these operations preserve the product of the three permutations in
a triple. They also satisfy the braid relation σ1σ2σ1 = σ2σ1σ2. Obviously, all
the triples obtained by braiding generate the same group.

It is natural to call the operation σ1 color exchange since now the permuta-
tion b becomes the first element of the triple and therefore corresponds to the
black vertices, the permutation b−1ab conjugate to a corresponds to the white
vertices, and the permutation c corresponding to faces remains the same.

The operation σ2 exchanges white vertices with faces, while preserving the
black vertices. The operation σ1σ2σ1 gives the triple (c, c−1bc, a) and thus
exchanges black vertices with faces while preserving the white vertices. It is
natural to call both operations dualities. A map which is isomorphic to one of
its duals is called self-dual.

Definition 7 (Primitive group) A permutation group G of degree n acting
on a set X, |X| = n, is called imprimitive if the set X can be subdivided into
m disjoint blocks X1, . . . , Xm of equal size |Xi| = n/m, where 1 < m < n, such
that an image of a block under the action of any element of G is once again
a block. A permutation group which is not imprimitive is called primitive. A
primitive permutation group not equal to Sn or An is called special.

Theorem 8 (Ritt’s theorem) A ramified covering is a composition of two
or more coverings of smaller degrees if and only if its monodromy group is
imprimitive.

Remark 9 (Primitive groups are few) There are 301 transitive permuta-
tion groups of degree n = 12, but only six of them are primitive (Sn and An

included); there are (exactly) 25 000 transitive permutation groups of degree
n = 24, but only five of them are primitive (this information is taken from [9]).
When n is prime, all groups of degree n are primitive, but they are not numer-
ous as well. To compare, there are 1854 transitive groups of degree 28, only
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8 groups of degree 29, and 5712 groups of degree 30. What is more, a group
generated by a pair of randomly chosen permutations is either Sn or An with a
probability which tends to 1 as n→∞. This is why special groups have special
interest.

In 1990, Guralnick and Thompson [8] conjectured that, apart from the cyclic
groups Cp and dihedral groups D2p for p prime, the number of special groups
admitting a planar presentation is finite. This conjecture was proved in 2001
by Frohardt and Magaard [7], not only for the genus zero but for an arbitrary
genus, by exhibiting an upper bound for the degrees of the groups in question.
However, this bound is largely overestimated, so a complete classification of
planar special groups is still not achieved. In our paper, we classify these groups
for the case of weighted trees.

1.4 Fields of definition and Galois action

It is well known that a Belyi function of a plane dessin is unique up to a linear
fractional transformation of its argument. One can choose the transformation
to make the coefficients of the Belyi function to be algebraic numbers. To
every dessin there corresponds a specific number field which is called its field
of definition. There are some subtleties in this notion, but in the specific case
studied in our paper, it can be defined in a simple way.

Definition 10 (Field of definition) For a plane dessin all of whose faces ex-
cept the outer one are of degree 1, the field of definition is the smallest number
field to which belong the coefficients of the Belyi function of the dessin.

The Galois group Γ = Aut(Q|Q) acts on Belyi functions by replacing all
their coefficients by their algebraically conjugate ones. This action descends to
an action on dessins.

The passport of the dessin is invariant under this action. Another important
invariant of the Galois action is the edge rotation group. Thus, if in the same
combinatorial orbit there are dessins with different edge rotation groups then
this combinatorial orbit splits into several Galois orbits. Even more so, the
character table of the group contains an important information about the field
of definition. These considerations give us an additional impetus to study edge
rotation groups.

Algebraic conjugation applied to a pair of dual dessins gives us again a pair
of dual dessins. The same is true for the color exchange. Therefore the self-
duality or the property of being invariant under the color exchange are additional
invariants of the Galois action.
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2 Classification of special weighted trees

2.1 Gareth A. Jones’s classification

The edge rotation groups of weighted trees, that is, of plane maps with all their
faces except of the outer one being of degree 1, contain permutations with the
cycle structure 1t(n − t)1. Motivated by our study of weighted trees, Gareth
Jones classified all special permutation groups containing such a permutation,
see [10]. In particular, he had shown that in all such cases the number of
fixed points t ≤ 2. This property is based on two results. The first is an
old theorem by Jordan (1871) [11] stating that a primitive group containing a
permutation with the cycle structure 1t(n− t)1 is (t+ 1)-transitive. The second
is the complete classification of multiply transitive groups: it is based on the
classification theorem of finite simple groups.

The classification due to Jones looks as follows (we use standard notation
for cyclic, affine and projective groups and for the Mathieu groups):

Theorem 11 (G. Jones) Let G be a primitive permutation group of degree
n not equal to Sn or An. Suppose that G contains a permutation with cycle
structure 1t(n− t)1. Then t ≤ 2, and one of the following holds:

0. t = 0 and either
(a) Cp ≤ G ≤ AGL1(p) with n = p prime, or
(b) PGLd(q) ≤ G ≤ PΓLd(q) with n = (qd − 1)/(q − 1) and d ≥ 2 for

some prime power q = pe, or
(c) G = L2(11), M11 or M23 with n = 11, 11 or 23 respectively.

1. t = 1 and either
(a) AGLd(q) ≤ G ≤ AΓLd(q) with n = qd and d ≥ 1 for some prime

power q = pe, or
(b) G = L2(p) or PGL2(p) with n = p+ 1 for some prime p ≥ 5, or
(c) G = M11, M12 or M24 with n = 12, 12 or 24 respectively.

2. t = 2 and PGL2(q) ≤ G ≤ PΓL2(q) with n = q + 1 for some prime power
q = pe.

The set of groups listed in the above theorem is infinite. When, in addition
to the existence of elements with cycle structure 1t(n−t)1, we impose a planarity
condition, we get a finite set of groups (with two exceptions considered below).

2.2 Two infinite series

For n = p prime, all transitive groups of degree p are primitive. According to
Theorem 11, all the groups G between the cyclic group Cp and the affine group
AGL1(p) contain a cycle of length p and therefore, in principle, might be edge
rotation groups of ordinary trees. But, according to [2], only two of them are
indeed realized by trees, see Fig. 3:
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• the cyclic group Cp of order p, which is the edge rotation group of the
star-tree with p edges;

• the dihedral group D2p of order 2p, which is the edge rotation group of
the chain-tree with p edges.

In what follows, we avoid mentioning these two cases.

Figure 3: The edge rotation group for the star-tree is the cyclic group Cp, and
for the chain-tree it is the dihedral group D2p. If p is prime both groups are
primitive.

Thus, among the subgroups of AGL1(p) only the group AGL1(p) itself re-
mains of interest for us since, according to the case 1(a) of Theorem 11, this
group contains permutations with the cycle structure 11(p− 1)1, and therefore
it could be an edge rotation group of a map with p edges, one face of degree 1,
and p vertices. However, it is easy to see that this can only happen for p = 5
and p = 7. Indeed, the cycle structures of the elements of AGL1(p) are all of
the form lk11 where lk = p − 1. This partition has k + 1 parts, and a pair of
such partitions has k1 + k2 + 2 parts, k1, k2 ≥ 1 being divisors of p− 1. Now, if
k1 = k2 = (p− 1)/2, both partitions become equal to 112k, and we get a chain
tree. Otherwise, the biggest possible number of parts in two partitions (which
should give us the number of vertices) is m = p−1

2 + p−1
3 + 2, and the inequality

m ≥ p leads to p ≤ 7.

2.3 Main theorem

Theorem 12 (Classification) The complete list of special weighted trees, not
taking into account stars and chains, is the list given in the tables of Sect. 3.
It contains, up to the color exchange, 184 trees, which are subdivided into (at
least) 85 Galois orbits and generate 34 different edge rotation groups.

Remark 13 (Color exchange) One should be careful when counting trees
“up to the color exchange” in the case when α = β, that is, when the black
partition is equal to the white one. There are several such orbits in our list: 6.7,
8.1, 8.7, 8.9, 9.7, 12.10, 12.12, 24.5 (see the generators and the pictures below).
Almost all of them are invariant under the color exchange, except the trees in
orbits 8.1 and 9.7 for which the color exchange gives us a different tree in the
same orbit (see Fig. 9 and Fig. 16).
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Remark 14 (Duality) There is a number of dual and self-dual weighted trees
in our list:

• dessins 5.1, 6.2, 6.9, 8.5, 8.14 and 10.3 are self-dual;
• dessins 6.3 and 6.4, 6.5 and 6.6, 6.7 and 6.8, 8.12 and 8.13, two dessins in

orbit 9.5 are pairwise dual.

Remark 15 (Galois orbits) The complete set of combinatorial Galois invari-
ants is unknown (and probably there is none). We observe a couple of combina-
torial orbits (9.5 and 9.7) with the same edge rotation groups splitting into two
Galois orbits. The orbit 9.7 consists of 4 trees, two of which are invariant under
the color exchange, but the other two are not; this gives us a combinatorial
explanation of the splitting. At the same time we do not see any combinatorial
reason to explain splitting of the “orbit” 9.5.

We have computed all fields of definitions for n ≤ 12 except for orbits 12.3,
12.8 and 12.9. Also, Belyi functions for certain ordinary trees with n > 12
edges were computed in [14] (for n = 23) and [6] (for n = 21, 31). There remain
several cases for n > 12 when we cannot guarantee that, what appears as an
“orbit” in our list, is indeed a single Galois orbit and not a union of several
Galois orbits. That is why we say with caution “at least 85 Galois orbits”.

2.4 Proof of the main theorem

The case t = 0, that is, the case of ordinary trees, was already settled in [2];
the complete list of the corresponding 48 trees may be found there (we also list
them in our tables).

All genus zero generating sets for the affine groups (case 1(a) of Theorem 11)
are listed in [13]; see also Wang [18]. Taking the generating sets containing the
triples of permutations, one of which has a cycle structure 11(n − 1)1, permits
us to settle this case.

The case 1(c) of Theorem 11, that is, the case of Mathieu groups M11, M12

and M24, can easily be handled using the GAP computer system.

All the remaining groups (the cases 1(b) and 2 of Theorem 11) are subgroups
of PΓL2(q) for some prime power q = pe, acting on n = q + 1 points. Notice
the subscript 2: the projective geometry in question is always a projective line.
We will need the following lemma which can be found in Müller [15] or in
Adrianov [1].

Lemma 16 (Number of cycles) Let q = pe be a prime power, e > 1, and
let h > 1 be the least prime divisor of e. Then a non-identity permutation
g ∈ PΓL2(q) cannot have more than l = pe/h + 1 fixed points. A non-identity
permutation g ∈ PΓL2(p) with p prime cannot have more than 2 fixed points. If
no element of a permutation group of degree n has more than l fixed points then

an element of order k can have at most
n− l
k

+ l cycles.
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A map with n edges and at most two faces of degree 1 must have at least
n− 1 = q vertices. If both permutations a and b are involutions we get a chain-
tree. If at least one of them is of order k ≥ 3 and thus have, roughly, n/k
cycles, then, once again roughly, we get not more than 5n/6 vertices, which is
not enough.

More exactly, for q = pe, e > 1, denote u =
√
q, so that q = u2. According

to the above lemma, a non-identity element of PΓL2(q) cannot have more than
u + 1 fixed points, and thus an element of order k cannot have more that
(q+1)−(u+1)

k + (u + 1) cycles. Therefore, the total number of cycles in two
permutations is not bigger than

q − u
2

+ (u+ 1) +
q − u

3
+ (u+ 1) =

5

6
(u2 − u) + 2(u+ 1).

The quadratic inequality

5

6
(u2 − u) + 2(u+ 1) ≥ u2

leads to

u ≤ 7 +
√

97

2
<

17

2
= 8.5

so that q ≤ 72.25. The biggest prime power satisfying this inequality is 64.

In the same way, for the group PΓL2(p) with p prime we have

(p+ 1)− 2

2
+ 2 +

(p+ 1)− 2

3
+ 2 =

5(p− 1)

6
+ 4 ≥ p,

which leads to p ≤ 19.

There remains a finite number of groups to study. Some of them can be
easily ruled out by hand, as in Example 17 below. The remaining cases were
treated by GAP.

Theorem 12 is proved. �

Example 17 (Groups eliminated “by hand”) Let us take q = 64 = 26.
According to Lemma 16, the upper bound for the number of fixed points
is 23 + 1 = 9. The number of cycles in an involution is then bounded by
(64 − 8)/2 + 8 = 36, and the number of cycles in a permutation of order 3 is
bounded by (64 − 7)/3 + 7 = 26; for all the other permutation the number of
cycles is even less than that. However, 36 + 26 = 62 vertices is not enough in
order to create a map with n = q + 1 = 65 edges and with one or two faces of
degree 1.

Similar considerations permit us to handle the case q = 27 = 33. The
number of fixed points is bounded by 3 + 1 = 4, and the total number of cycles
in two permutations, at least one of which is not an involution, is bounded by
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(27 − 3)/2 + 3 + (27 − 3)/3 + 3 = 26, which is not enough in order to create a
map with 28 edges and with one or two faces of degree 1.

Note, however, that this simple approach fails for q = 49. The number
of fixed points is bounded by 7 + 1 = 8; the total number of cycles in two
permutations is bounded by (49− 7)/2 + 7 + (49− 7)/3 + 7 = 49. This number
of vertices is a priori sufficient in order to create a map with 50 edges and with
two faces of degree 1. Therefore, in order to rule out the group PΓL2(49) we
need to study it using GAP.

Remark 18 (Cross-verification) As in any experimental work, in order to
be on the safe side it is useful to attack the problem from various perspectives
and to see if the results thus obtained are coherent. In our work, we did the
following:

• We looked through all primitive groups up to degree 127 (not only those
listed in Theorem 11) using the GAP system. Thus, Jones’s classification
has also received an independent experimental confirmation.

• Many, though not all of the above groups were also studied using the
Maple package group.

• For the groups of degree up to 11 we made use of the catalogue [5].
• Whenever possible, we have computed Belyi functions in order to ver-

ify if indeed a combinatorial orbit in question splits into several Galois
orbits. For example, there exist 16 trees of weight 10 with the passport
(1281, 1224, 1281). They split into four Galois orbits, and one of them does
consist of a single tree corresponding to the group PGL2(9): see orbit 10.3.

• For a given passport, the number of distinct solutions given by Maple was
compared with the total numbers of trees in the corresponding combina-
torial orbit. The latter was constructed using GAP.

Acknowledgements. We are grateful to Gareth A. Jones, without whose
theorem our work would be impossible.
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3 Tables and figures

The GAP system contains a data library of all primitive permutation groups of
degree < 2500. The command PrimitiveGroup(n,k) returns the kth element of
the list of primitive groups of degree n.

There are several trees in out list, which turn out to be the only realizations
of their passports. We call such trees unitrees; their complete classification was
obtained in [16].

When there is a pair of trees mirror symmetric to each other we present only
one of them, both in a permutation form and as a figure. Such trees necessarily
belong to the same Galois orbit since they can be obtained from each other by
a complex conjugation, which is an element of the absolute Galois group Γ (in
fact, the only element explicitly known).

Every figure contains a distinguished edge: it is the root edge, which means
that it is labeled by 1. This permits to easily establish the correspondence
between permutations and figures. The choice of the root edge does not al-
ways look geometrically natural but it is not our choice: the permutations were
generated by GAP.

Fields of definition are computed only for the degrees n ≤ 12, with a very
few exceptions for greater degrees.

AGL1(5) of order 20 PrimitiveGroup(5,3)

5.1. (1122, 1141, 1141). Number of trees: 2.
a = (1, 5)(2, 3) b = (2, 3, 4, 5)

Field: Q(
√
−1). There are no other trees with this passport.

L2(5) of order 60 PrimitiveGroup(6,1)

6.1. (1222, 32, 1151). Number of trees: 1.
a = (3, 5)(4, 6) b = (1, 2, 3)(4, 5, 6)

Field: Q. This is a unitree of series D, see [16].

6.2. (1222, 1151, 1151). Number of trees: 1.
a = (3, 5)(4, 6) b = (1, 5, 3, 2, 4)

Field: Q. There exist two more trees with this passport, defined over Q(
√
−15).

PGL2(5) of order 120 PrimitiveGroup(6,2)

6.3. (1222, 1241, 61). Number of trees: 1.
a = (1, 5)(2, 6) b = (3, 4, 5, 6)

Field: Q. There exists one more tree with this passport, which is symmetric
with the symmetry of order 2 and defined over Q.
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6.4. (1222, 61, 1241). Number of trees: 1.
a = (3, 5)(4, 6) b = (1, 2, 3, 5, 4, 6)

Field: Q. This tree is dual to 6.3, so we have the same situation here.

6.5. (23, 1241, 1151). Number of trees: 1.
a = (1, 3)(2, 6)(4, 5) b = (3, 4, 5, 6)

Field: Q. This is a unitree of series J , see [16].

6.6. (23, 1151, 1241). Number of trees: 1.
a = (1, 2)(3, 4)(5, 6) b = (2, 3, 4, 6, 5)

Field: Q. This is a unitree of series E2, see [16].

6.7. (1241, 1241, 1151). Number of trees: 1.
a = (1, 3, 6, 2) b = (3, 4, 5, 6)

Field: Q. This is a unitree of series C, see [16].

6.8. (1241, 1151, 1241). Number of trees: 1.
a = (3, 4, 5, 6) b = (1, 2, 4, 3, 6)

Field: Q. This is a unitree of series C, see [16].

6.9. (32, 1241, 1241). Number of trees: 1.
a = (1, 3, 2)(4, 6, 5) b = (3, 4, 5, 6)

Field: Q. There exists one more tree with this passport, which is symmetric
with the symmetry of order 2 and defined over Q.

AGL1(7) of order 42 PrimitiveGroup(7,4)

7.1. (1123, 1132, 1161). Number of trees: 2.
a = (1, 4)(3, 5)(6, 7) b = (2, 4, 6)(3, 5, 7)

Field: Q(
√
−3). There are no other trees with this passport.

L3(2) of order 168 PrimitiveGroup(7,5)

7.2. (1322, 1132, 71). Number of trees: 2.
a = (1, 3)(4, 5) b = (2, 3, 5)(4, 7, 6)

Field: Q(
√
−7). There are no other trees with this passport.

7.3. (1322, 112141, 71). Number of trees: 2.
a = (1, 4)(6, 7) b = (2, 3, 4, 7)(5, 6)

Field: Q(
√
−7). There exist two more trees with this passport, defined over

Q(
√

21).

AΓL1(8) of order 168 PrimitiveGroup(8,2)

8.1. (1232, 1232, 1171). Number of trees: 4.
a1 = (1, 4, 8)(2, 7, 6) b1 = (3, 5, 8)(4, 6, 7)
a2 = (3, 5, 8)(4, 6, 7) b2 = (1, 4, 8)(2, 7, 6)

Field: Q
(√

14− 14
√
−3
)

. There exists one more tree with this passport, see

orbit 8.9.
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ASL3(2) of order 1344 PrimitiveGroup(8,3)

8.2. (24, 122141, 1171). Number of trees: 2.
a = (1, 3)(2, 8)(4, 6)(5, 7) b = (3, 4)(5, 7, 6, 8)

Field: Q(
√
−7). There are no other trees with this passport.

8.3. (1422, 42, 1171). Number of trees: 2.
a = (2, 6)(4, 8) b = (1, 8, 4, 6)(2, 7, 3, 5)

Field: Q(
√
−7). There are no other trees with this passport.

8.4. (1422, 2161, 1171). Number of trees: 2.
a = (2, 3)(6, 7) b = (1, 2)(3, 6, 7, 4, 5, 8)

Field: Q(
√
−7). There exist two more trees with this passport, defined over

Q(
√
−14).

8.5. (1422, 1171, 1171). Number of trees: 2.
a = (1, 3)(6, 8) b = (2, 3, 5, 4, 7, 8, 6)

Field: Q(
√
−7). There exist three more trees with this passport, defined over

the splitting field of the polynomial a3 + 2058a+ 364 952.

8.6. (1232, 122141, 1171). Number of trees: 4.
a1 = (3, 5, 7)(4, 6, 8) b1 = (1, 2, 7, 8)(4, 6)
a2 = (3, 5, 7)(4, 6, 8) b2 = (1, 8)(2, 4, 7, 5)

Field: Q
(√
−455+ 952

√
−14

)
. There exist six more trees with this passport,

which form a unique Galois orbit of degree 6.

8.7. (122141, 122141, 1171). Number of trees: 2.
a = (1, 7)(2, 4, 8, 6) b = (3, 4)(5, 7, 6, 8)

Field: Q(
√
−7). There exist 18 more trees with this passport, which form a

unique Galois orbit of degree 18.

L2(7) of order 168 PrimitiveGroup(8,4)

8.8. (24, 1232, 1171). Number of trees: 1.
a = (1, 3)(2, 8)(4, 5)(6, 7) b = (3, 7, 8)(4, 6, 5)

Field: Q. This is the sporadic unitree K, see [16].

8.9. (1232, 1232, 1171). Number of trees: 1.
a = (1, 5, 2)(4, 8, 6) b = (3, 7, 8)(4, 6, 5)

Field: Q. There exist four more tree with this passport, see orbit 8.1.

PGL2(7) of order 336 PrimitiveGroup(8,5)

8.10. (1223, 42, 1261). Number of trees: 1.
a = (2, 6)(3, 8)(4, 7) b = (1, 2, 3, 8)(4, 6, 5, 7)

Field: Q. There exist two more trees with this passport; they are both sym-
metric with the symmetry of order 2 and defined over Q(

√
−2).
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8.11. (24, 1261, 1261). Number of trees: 1.
a = (1, 3)(2, 6)(4, 8)(5, 7) b = (3, 5, 7, 4, 8, 6)

Field: Q. There exists one more tree with this passport, which is symmetric
with the symmetry of order 2 and defined over Q.

8.12. (1223, 1261, 1171). Number of trees: 1.
a = (1, 6)(2, 7)(4, 8) b = (3, 5, 7, 4, 8, 6)

Field: Q. There exist five more trees with this passport, defined over the split-
ting field of the polynomial a5 + 22a4 + 209a3 + 1040a2 + 2624a+ 2560.

8.13. (1223, 1171, 1261). Number of trees: 1.
a = (1, 7)(4, 5)(6, 8) b = (2, 3, 8, 6, 7, 5, 4)

Field: Q. This tree is dual to 8.12, so we have the same situtation here.

8.14. (1232, 1261, 1261). Number of trees: 1.
a = (1, 2, 4)(3, 6, 5) b = (3, 5, 7, 4, 8, 6)

Field: Q. There exist four more trees with this passport. One of them is
symmetric, with the symmetry of order 2, and therefore it is defined over Q.
Three remaining trees are defined over the splitting field of the polynomial
a3 − 6a+ 16.

8.15. (1223, 1232, 81). Number of trees: 2.
a1 = (1, 6)(2, 7)(4, 8) b1 = (3, 7, 8)(4, 6, 5)
a2 = (1, 4)(2, 6)(5, 8) b2 = (3, 7, 8)(4, 6, 5)

Field: Q(
√

2). There exist two more trees with this passport; they are both
symmetric with the symmetry of order 2 and defined over Q(

√
−2).

AΓL1(9) of order 144 PrimitiveGroup(9,5)

9.1. (1323, 1142, 1181). Number of trees: 2.
a = (1, 3)(5, 6)(7, 8) b = (2, 4, 3, 7)(5, 6, 9, 8)

Field: Q(
√
−2). There exist six more trees with this passport; they form a

unique Galois orbit of degree 6.

AGL2(3) of order 432 PrimitiveGroup(9,7)

9.2. (1323, 33, 1181). Number of trees: 2.
a = (4, 7)(5, 8)(6, 9) b = (1, 2, 4)(3, 9, 7)(5, 6, 8)

Field: Q(
√
−2). There are no other trees with this passport.

9.3. (1323, 112161, 1181). Number of trees: 2.
a = (1, 7)(3, 6)(5, 8) b = (2, 3)(4, 8, 5, 7, 6, 9)

Field: Q(
√
−2). There exist 14 more trees with this passport; they form a

unique Galois orbit of degree 14.
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L2(8) of order 504 PrimitiveGroup(9,8)

9.4. (1124, 33, 1271). Number of trees: 1.
a = (2, 3)(4, 8)(5, 9)(6, 7) b = (1, 2, 5)(3, 8, 4)(6, 9, 7)

Field: Q. This is the sporadic unitree L, see [16].

9.5. (1124, 1271, 1271). Number of trees: 2.
a1 = (1, 6)(2, 5)(3, 4)(8, 9) b1 = (3, 4, 9, 8, 6, 7, 5)
a2 = (1, 9)(2, 4)(3, 5)(6, 8) b2 = (3, 4, 9, 8, 6, 7, 5)

Field: Q. This orbit consisting of two trees splits into 2 Galois orbits, both
defined over Q. We do not see a combinatorial reason to explain this splitting.
There exist four more trees with this passport; they form a unique Galois orbit
of degree 4.

PΓL2(8) of order 1512 PrimitiveGroup(9,9)

9.6. (1124, 1332, 91). Number of trees: 2.
a = (1, 5)(2, 8)(3, 7)(6, 9) b = (1, 7, 8)(3, 4, 9)

Field: Q(
√
−3). There are no other trees with this passport.

9.7. (1332, 1332, 91). Number of trees: 4.
a1 = (1, 6, 4)(2, 8, 5) b1 = (1, 7, 8)(3, 4, 9)
a2 = (1, 4, 6)(2, 5, 8) b2 = (1, 7, 8)(3, 4, 9)

Field: Q(
√
−3). This orbit consisting of four trees splits into 2 Galois orbits,

both defined over Q(
√
−3). There is a simple reason for this splitting: two trees

are invariant under a color exchange, while the other two trees are not. There
are no other trees with this passport.

9.8. (1332, 112161, 1271). Number of trees: 4.
a1 = (1, 5, 6)(4, 9, 8) b1 = (1, 3, 7, 4, 8, 9)(2, 6)
a2 = (1, 9, 5)(2, 4, 6) b2 = (1, 3, 7, 4, 8, 9)(2, 6)

Field: Q
(√

10 + 2
√
−3
)

. There exist nine more trees with this passport; they

form a unique Galois orbit of degree 9.

PGL2(9) of order 720 PrimitiveGroup(10,4)

10.1. (25, 1133, 1281). Number of trees: 1.
a = (1, 2)(3, 4)(5, 10)(6, 7)(8, 9) b = (2, 3, 10)(4, 9, 8)(5, 7, 6)

Field: Q. This is the sporadic unitree M , see [16].

10.2. (25, 1242, 1281). Number of trees: 1.
a = (1, 3)(2, 7)(4, 8)(5, 6)(9, 10) b = (3, 6, 10, 9)(4, 8, 5, 7)

Field: Q. There exist two more tree with this passport, which are symmetric
with the symmetry of order 2 and defined over Q(

√
−1).
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10.3. (1224, 1281, 1281). Number of trees: 1.
a = (1, 8)(2, 6)(4, 9)(7, 10) b = (3, 4, 9, 7, 10, 5, 6, 8)

Field: Q. This example is rich with various combinatorial invariants. There
exist, in total, 16 trees with this passport. One of them is our special tree. Two
trees are symmetric, with the symmetry of order 2; they are defined over the
field Q(

√
−1). The 13 remaining trees split into two Galois orbits, of size 5

and 8, respectively. The orbit of size 5 contains self-dual trees, and the orbit of
size 8 contains not self-dual ones.

PΓL2(9) of order 1440 PrimitiveGroup(10,7)

10.4. (1423, 2181, 1281). Number of trees: 1.
a = (1, 4)(2, 5)(3, 6) b = (1, 2, 3, 6, 9, 8, 7, 4)(5, 10)

Field: Q. There exist nine more trees with this passport; they form a unique
Galois orbit of degree 9.

10.5. (1423, 1242, 101). Number of trees: 1.
a = (1, 4)(2, 5)(3, 6) b = (1, 5, 6, 9)(2, 10, 7, 8)

Field: Q. There exist eight more trees with this passport. Three of them are
symmetric, with a symmetry of order 2; they are defined over the splitting field
of the polynomial a3 − a2 − 8a + 112. The five remaining trees form a Galois
orbit of degree 5.

L2(11) of order 660 acting on 11 points PrimitiveGroup(11,5)

11.1. (1324, 1233, 111). Number of trees: 2.
a = (1, 7)(2, 8)(5, 10)(6, 9) b = (3, 5, 11)(4, 9, 7)(6, 10, 8)

Field: Q(
√
−11). There exist eight more trees with this passport; they form a

unique orbit of degree 8.

M11 of order 7920 PrimitiveGroup(11,6)

11.2. (1324, 1342, 111). Number of trees: 2.
a = (1, 7)(3, 10)(5, 11)(6, 8) b = (2, 7, 9, 10)(3, 4, 8, 5)

Field: Q(
√
−11). There exist eight more trees with this passport; they form a

unique orbit of degree 8.

M11 of order 7920 acting on 12 points PrimitiveGroup(12,1)

12.1. (1424, 2242, 11111). Number of trees: 2.
a = (1, 4)(2, 3)(5, 10)(6, 9) b = (1, 11, 7, 2)(3, 5)(4, 12, 6, 9)(8, 10)

Field: Q(
√
−11). There exist 28 more trees with this passport; they form a

unique Galois orbit of degree 28.

12.2. (1424, 1252, 11111). Number of trees: 2.
a = (1, 10)(2, 12)(4, 7)(5, 11) b = (1, 6, 11, 9, 8)(2, 12, 3, 5, 7)

Field: Q(
√
−11). There exist, in total, 45 trees with this passport. Two of them

compose the orbit 12.2 with group M11, two more compose the orbit 12.7 with
group M12, both orbits are defined over Q(

√
−11). All the 41 remaining trees

form a unique Galois orbit of degree 41.
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12.3. (1424, 11213161, 11111). Number of trees: 6.
a1 = (1, 10)(2, 11)(3, 6)(5, 12) b1 = (1, 5, 7, 6, 8, 4)(2, 11, 10)(9, 12)
a2 = (1, 12)(2, 3)(6, 7)(8, 10) b2 = (1, 5, 7, 6, 8, 4)(2, 11, 10)(9, 12)
a3 = (1, 3)(2, 12)(5, 9)(6, 7) b3 = (1, 5, 7, 6, 8, 4)(2, 11, 10)(9, 12)

There exist, in total, 150 trees with this passport. Six of them compose the
orbit 12.3 with group M11, two more trees compose the orbit 12.8 with group M12.
The calculations for so large orbits are difficult to carry out. We believe that
the orbit 12.8 is defined over Q(

√
−11) and the orbit 12.3 is defined over a cubic

extension of Q(
√
−11). We can say nothing about the 142 remaining trees.

M12 of order 95 040 PrimitiveGroup(12,2)

12.4. (1424, 34, 11111). Number of trees: 2.
a = (1, 8)(3, 9)(6, 12)(10, 11) b = (1, 5, 6)(2, 8, 3)(4, 12, 7)(9, 11, 10)

Field: Q(
√
−11). There exist three more trees with this passport, defined over

the splitting field of the polynomial a3 − a2 − 216a− 1296.

12.5. (26, 1333, 11111). Number of trees: 2.
a = (1, 11)(2, 7)(3, 6)(4, 5)(8, 10)(9, 12) b = (2, 7, 9)(3, 12, 10)(4, 11, 8)

Field: Q(
√
−11). There are no other trees with this passport.

12.6. (26, 1442, 11111). Number of trees: 2.
a = (1, 6)(2, 5)(3, 12)(4, 8)(7, 10)(9, 11) b = (2, 10, 6, 4)(3, 9, 11, 7)

Field: Q(
√
−11). There are no other trees with this passport.

12.7. (1424, 1252, 11111). Number of trees: 2.
a = (1, 10)(3, 5)(6, 12)(7, 9) b = (1, 8, 9, 12, 2)(3, 5, 6, 4, 11)

Field: Q(
√
−11). See comments to the orbit 12.2.

12.8. (1424, 11213161, 11111). Number of trees: 2.
a = (1, 12)(3, 8)(6, 9)(7, 10) b = (2, 3, 9, 10, 7, 12)(4, 11, 8)(5, 6)

Field: Q(
√
−11). See comments to the orbit 12.3.

12.9. (1424, 122181, 11111). Number of trees: 4.
a1 = (1, 11)(3, 8)(5, 12)(9, 10) b1 = (1, 12)(2, 3, 10, 9, 6, 11, 4, 7)
a2 = (1, 4)(3, 10)(5, 11)(6, 8) b2 = (1, 12)(2, 3, 10, 9, 6, 11, 4, 7)

There exist, in total, 90 trees with this passport. We believe that this orbit is
defined over a quadratic extension of Q(

√
−11).

12.10. (1333, 1333, 11111). Number of trees: 2.
a = (1, 9, 10)(3, 4, 12)(5, 8, 6) b = (2, 7, 9)(3, 12, 10)(4, 11, 8)

Field: Q(
√
−11). There exist 34 more trees with this passport.

12.11. (1333, 1442, 11111). Number of trees: 2.
a = (1, 6, 11)(3, 5, 9)(8, 10, 12) b = (2, 10, 6, 4)(3, 9, 11, 7)

Field: Q(
√
−11). There exist 24 more trees with this passport.
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12.12. (1442, 1442, 11111). Number of trees: 2.
a = (1, 12, 11, 5)(3, 10, 8, 9) b = (2, 10, 6, 4)(3, 9, 11, 7)

Field: Q(
√
−11). There exist 14 more trees with this passport.

PGL2(11) of order 1320 PrimitiveGroup(12,4)

12.13. (1225, 34, 12101). Number of trees: 2.
a1 = (2, 9)(3, 7)(5, 10)(6, 11)(8, 12)
b1 = (1, 7, 8)(2, 4, 12)(3, 6, 11)(5, 9, 10)

a2 = (2, 4)(3, 11)(5, 7)(6, 9)(10, 12)
b2 = (1, 7, 8)(2, 4, 12)(3, 6, 11)(5, 9, 10)

Field: Q(
√

5). There exist two more trees with this passport; they are both
symmetric with the symmetry of order 2 and defined over Q(

√
−1).

12.14. (1225, 1252, 12101). Number of trees: 2.
a1 = (1, 7)(3, 10)(4, 8)(6, 11)(9, 12) b1 = (2, 12, 9, 7, 4)(3, 6, 11, 5, 8)
a2 = (1, 9)(3, 4)(5, 6)(8, 11)(10, 12) b2 = (2, 7, 12, 4, 9)(3, 5, 6, 8, 11)

Field: Q(
√

5). There exist 34 more trees with this passport. Six of them are
symmetric with the symmetry of order 2, but they split into two Galois orbits
since two trees have the edge rotation group of order 3840, while the other four
have the group of order 23 040. All the 28 remaining trees form a unique Galois
orbit of degree 28.

L3(3) of order 5616 PrimitiveGroup(13,7)

13.1. (1524, 1134, 131). Number of trees: 4.
a1 = (1, 3)(2, 12)(5, 7)(6, 10)
b1 = (1, 10, 12)(2, 9, 7)(3, 8, 13)(4, 5, 11)

a2 = (1, 3)(2, 8)(4, 7)(6, 11)
b2 = (1, 10, 12)(2, 9, 7)(3, 8, 13)(4, 5, 11)

13.2. (1524, 112242, 131). Number of trees: 4.
a1 = (2, 4)(3, 9)(5, 8)(7, 12)
b1 = (1, 11, 3, 8)(2, 10, 6, 12)(4, 13)(5, 7)

a2 = (2, 4)(5, 6)(9, 13)(11, 12)
b2 = (1, 11, 3, 8)(2, 10, 6, 12)(4, 13)(5, 7)

13.3. (1524, 12213161, 131). Number of trees: 4.
a1 = (1, 9)(2, 12)(4, 5)(6, 11)
b1 = (1, 8, 5)(2, 7)(3, 11, 12, 13, 4, 10)

a2 = (2, 8)(3, 9)(4, 5)(6, 10)
b2 = (1, 8, 5)(2, 7)(3, 11, 12, 13, 4, 10)
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L2(13) of order 1092 PrimitiveGroup(14,1)

14.1. (1226, 1234, 11131). Number of trees: 1.
a = (1, 10)(2, 12)(3, 14)(4, 6)(5, 11)(7, 8)
b = (2, 14, 12)(3, 7, 6)(4, 9, 10)(8, 11, 13)

PGL2(13) of order 2184 PrimitiveGroup(14,2)

14.2. (27, 1234, 12121). Number of trees: 2.
a1 = (1, 7)(2, 11)(3, 9)(4, 6)(5, 10)(8, 13)(12, 14)
b1 = (1, 7, 14)(2, 11, 6)(3, 13, 4)(9, 12, 10)

a2 = (1, 8)(2, 12)(3, 13)(4, 10)(5, 7)(6, 11)(9, 14)
b2 = (1, 7, 14)(2, 11, 6)(3, 13, 4)(9, 12, 10)

14.3. (1226, 1243, 12121). Number of trees: 2.
a1 = (1, 13)(2, 14)(3, 10)(4, 7)(5, 12)(8, 11)
b1 = (1, 13, 12, 2)(3, 9, 6, 14)(4, 10, 11, 7)

a2 = (1, 2)(3, 9)(4, 8)(5, 7)(10, 14)(11, 13)
b2 = (1, 13, 12, 2)(3, 9, 6, 14)(4, 10, 11, 7)

L4(2) of order 20 160 PrimitiveGroup(15,4)

15.1. (1326, 132242, 151). Number of trees: 2.
a = (1, 7)(2, 9)(3, 14)(4, 15)(5, 8)(10, 12)
b = (1, 2, 14, 13)(3, 12)(4, 7, 11, 8)(6, 9)

15.2. (1724, 112143, 151). Number of trees: 2.
a = (2, 3)(6, 7)(10, 11)(14, 15)
b = (1, 13, 8, 11)(2, 7, 4, 14)(3, 10, 12, 5)(6, 9)

15.3. (1724, 11213261, 151). Number of trees: 2.
a = (1, 2)(4, 7)(9, 10)(12, 15)
b = (1, 15, 14)(2, 5)(3, 10, 12, 4, 13, 11)(6, 8, 9)

AGL4(2) = 24.L4(2) of order 322 560 PrimitiveGroup(16,11)

16.1. (1426, 2442, 11151). Number of trees: 2.
a = (2, 9)(4, 11)(5, 7)(6, 15)(8, 13)(14, 16)
b = (1, 7, 16, 10)(2, 5)(3, 9)(4, 11, 13, 6)(8, 14)(12, 15)

16.2. (1824, 1153, 11151). Number of trees: 2.
a = (1, 15)(3, 13)(5, 11)(7, 9)
b = (2, 11, 4, 16, 8)(3, 6, 5, 15, 14)(7, 12, 10, 13, 9)

16.3. (1824, 113162, 11151). Number of trees: 2.
a = (1, 16)(3, 14)(5, 12)(7, 10)
b = (2, 16, 10, 4, 9, 13)(3, 8, 6)(5, 14, 15, 7, 11, 12)
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16.4. (1426, 12213261, 11151). Number of trees: 6.
a1 = (1, 13)(3, 15)(5, 7)(6, 12)(8, 10)(9, 11)
b1 = (2, 4, 6, 9, 11, 13)(3, 7, 14)(5, 12, 16)(8, 15)

a2 = (1, 13)(4, 16)(5, 12)(6, 7)(8, 9)(10, 11)
b2 = (2, 4, 6, 9, 11, 13)(3, 7, 14)(5, 12, 16)(8, 15)

a3 = (1, 6)(4, 7)(9, 12)(10, 16)(11, 13)(14, 15)
b3 = (2, 4, 6, 9, 11, 13)(3, 7, 14)(5, 12, 16)(8, 15)

AΓL2(4) of order 5760 PrimitiveGroup(16,12)

16.5. (1426, 122143, 11151). Number of trees: 2.
a = (1, 15)(2, 12)(4, 8)(5, 11)(6, 16)(10, 14)
b = (3, 16, 6, 10)(4, 15, 5, 9)(7, 8)(11, 13, 12, 14)

L2(16) of order 4080 PrimitiveGroup(17,6)

17.1. (1128, 1235, 12151). Number of trees: 1.
a = (1, 11)(2, 10)(3, 9)(4, 8)(5, 7)(12, 17)(13, 16)(14, 15)
b = (1, 14, 11)(2, 7, 15)(3, 8, 12)(4, 6, 5)(9, 16, 13)

L2(16) : 2 of order 8160 PrimitiveGroup(17,7)

17.2. (1526, 1144, 12151). Number of trees: 1.
a = (1, 13)(2, 6)(3, 10)(4, 11)(8, 12)(15, 16)
b = (2, 7, 10, 6)(3, 12, 15, 13)(4, 11, 16, 5)(8, 17, 14, 9)

PGL2(19) of order 6840 PrimitiveGroup(20,2)

20.1. (1229, 1236, 12181). Number of trees: 3.
a1 = (1, 8)(2, 12)(4, 18)(5, 7)(6, 9)(10, 19)(11, 14)(13, 15)(16, 20)
b1 = (1, 8, 5)(3, 4, 17)(6, 9, 19)(7, 15, 14)(10, 16, 12)(11, 18, 20)

a2 = (1, 9)(2, 20)(4, 14)(5, 10)(6, 19)(7, 15)(11, 17)(12, 18)(13, 16)
b2 = (1, 8, 5)(3, 4, 17)(6, 9, 19)(7, 15, 14)(10, 16, 12)(11, 18, 20)

a3 = (1, 16)(2, 6)(4, 12)(5, 9)(7, 14)(8, 15)(10, 18)(11, 20)(13, 17)
b3 = (1, 8, 5)(3, 4, 17)(6, 9, 19)(7, 15, 14)(10, 16, 12)(11, 18, 20)

PΓL3(4) of order 120 960 PrimitiveGroup(21,7)

21.1. (1727, 132144, 211). Number of trees: 2.
a = (1, 16)(4, 17)(5, 20)(6, 18)(10, 11)(12, 13)(14, 21)
b = (2, 13, 16, 11)(3, 10, 9, 7)(4, 15, 20, 12)(5, 19)(6, 14, 8, 17)

Field: Q(
√
−7) (see [6]).
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M23 of order 10 200 960 PrimitiveGroup(23,5)

23.1. (1728, 132244, 231). Number of trees: 4.
a1 = (2, 5)(3, 21)(4, 17)(8, 16)(10, 18)(11, 19)(12, 23)(14, 20)
b1 = (1, 14, 17, 12)(3, 20, 7, 6)(5, 9, 16, 22)(8, 15, 10, 23)(11, 21)(13, 18)

a2 = (2, 6)(3, 13)(4, 17)(8, 9)(10, 12)(11, 18)(15, 20)(19, 23)
b2 = (1, 14, 17, 12)(3, 20, 7, 6)(5, 9, 16, 22)(8, 15, 10, 23)(11, 21)(13, 18)

Field: Q
(√
−23/2− (5/2)

√
−23

)
(see [14]).

M24 of order 244 823 040 PrimitiveGroup(24,1)

24.1. (212, 1636, 11231). Number of trees: 2.
a = (1, 19)(2, 24)(3, 12)(4, 5)(6, 8)(7, 22)

(9, 10)(11, 14)(13, 20)(15, 23)(16, 18)(17, 21)
b = (1, 14, 18)(4, 7, 21)(6, 10, 9)(8, 20, 23)(11, 17, 13)(12, 24, 16)

24.2. (1828, 38, 11231). Number of trees: 2.
a = (1, 5)(2, 9)(3, 11)(6, 13)(7, 17)(8, 16)(15, 20)(18, 23)
b = (1, 22, 23)(2, 24, 4)(3, 16, 8)(5, 10, 13)

(6, 14, 11)(7, 21, 19)(9, 15, 12)(17, 18, 20)

24.3. (1828, 1454, 11231). Number of trees: 2.
a = (1, 6)(2, 13)(3, 19)(5, 9)(7, 10)(8, 21)(12, 20)(18, 23)
b = (1, 12, 4, 17, 8)(2, 22, 3, 15, 5)(7, 13, 20, 14, 24)(11, 23, 18, 16, 21)

24.4. (1828, 12223262, 11231). Number of trees: 10.
a1 = (1, 7)(2, 6)(3, 19)(5, 24)(10, 13)(11, 23)(15, 21)(16, 20)
b1 = (1, 17, 8, 14, 13, 9)(2, 19)(3, 22, 5)(4, 21)(6, 10, 12, 23, 20, 16)(11, 18, 15)

a2 = (1, 7)(2, 21)(3, 16)(5, 24)(6, 15)(8, 14)(9, 18)(19, 20)
b2 = (1, 17, 8, 14, 13, 9)(2, 19)(3, 22, 5)(4, 21)(6, 10, 12, 23, 20, 16)(11, 18, 15)

a3 = (1, 22)(2, 13)(3, 5)(6, 14)(7, 23)(8, 24)(15, 16)(17, 21)
b3 = (1, 17, 8, 14, 13, 9)(2, 19)(3, 22, 5)(4, 21)(6, 10, 12, 23, 20, 16)(11, 18, 15)

a4 = (1, 7)(2, 16)(3, 21)(5, 18)(8, 14)(9, 24)(10, 22)(12, 13)
b4 = (1, 17, 8, 14, 13, 9)(2, 19)(3, 22, 5)(4, 21)(6, 10, 12, 23, 20, 16)(11, 18, 15)

a5 = (1, 16)(2, 24)(4, 20)(6, 19)(7, 12)(8, 18)(9, 13)(21, 22)
b5 = (1, 17, 8, 14, 13, 9)(2, 19)(3, 22, 5)(4, 21)(6, 10, 12, 23, 20, 16)(11, 18, 15)

24.5. (1636, 1636, 11231). Number of trees: 2.
a = (1, 13, 6)(2, 23, 5)(3, 4, 8)(10, 12, 16)(15, 17, 19)(20, 24, 22)
b = (1, 14, 18)(4, 7, 21)(6, 10, 9)(8, 20, 23)(11, 17, 13)(12, 24, 16)
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L5(2) of order 9 999 360 PrimitiveGroup(31,10)

31.1. (17212, 132644, 311). Number of trees: 6.
a1 = (2, 24)(5, 11)(7, 12)(8, 23)(10, 29)(13, 19)(14, 15)

(16, 18)(17, 27)(20, 28)(22, 26)(25, 31)
b1 = (1, 19)(3, 8)(4, 9, 10, 16)(6, 27)(7, 24, 22, 15)(11, 18)

(12, 23)(13, 17, 14, 30)(20, 29)(21, 26, 25, 28)

a2 = (2, 13)(5, 15)(7, 20)(8, 26)(10, 17)(11, 14)(12, 28)
(16, 25)(18, 31)(19, 24)(22, 23)(27, 29)

b2 = (1, 19)(3, 8)(4, 9, 10, 16)(6, 27)(7, 24, 22, 15)(11, 18)
(12, 23)(13, 17, 14, 30)(20, 29)(21, 26, 25, 28)

a3 = (2, 24)(5, 14)(7, 12)(8, 22)(10, 17)(11, 15)(13, 19)
(16, 25)(18, 31)(20, 28)(23, 26)(27, 29)

b3 = (1, 19)(3, 8)(4, 9, 10, 16)(6, 27)(7, 24, 22, 15)(11, 18)
(12, 23)(13, 17, 14, 30)(20, 29)(21, 26, 25, 28)

Defined over the splitting field of the polynomial a6 + a5 + 3a4 + 11a3 + 44a2 +
36a+ 32 (see [6]).

ASL5(2) of order 319 979 520 PrimitiveGroup(32,3)

32.1. (18212, 12310, 11311). Number of trees: 6.
a1 = (1, 23)(2, 24)(7, 17)(8, 18)(9, 25)(10, 26)(11, 13)

(12, 14)(15, 31)(16, 32)(27, 29)(28, 30)
b1 = (2, 29, 30)(3, 24, 16)(4, 12, 19)(5, 17, 21)(6, 13, 10)

(7, 8, 28)(9, 26, 18)(11, 15, 31)(14, 22, 25)(20, 32, 23)

a2 = (1, 19)(4, 18)(6, 24)(7, 21)(9, 15)(10, 30)(11, 31)
(12, 14)(13, 25)(16, 28)(26, 32)(27, 29)

b2 = (2, 29, 30)(3, 24, 16)(4, 12, 19)(5, 17, 21)(6, 13, 10)
(7, 8, 28)(9, 26, 18)(11, 15, 31)(14, 22, 25)(20, 32, 23)

a3 = (1, 3)(2, 16)(4, 14)(6, 10)(8, 12)(13, 15)(17, 31)
(18, 20)(19, 29)(21, 25)(23, 27)(30, 32)

b3 = (2, 29, 30)(3, 24, 16)(4, 12, 19)(5, 17, 21)(6, 13, 10)
(7, 8, 28)(9, 26, 18)(11, 15, 31)(14, 22, 25)(20, 32, 23)
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Figure 4: Group AGL1(5): orbit 5.1 of size 2.

(a) Orbit 6.1. (b) Orbit 6.2.

Figure 5: Group L2(5): two orbits of size 1.

(a) Orbit 6.3. (b) Orbit 6.4. (c) Orbit 6.5.

(d) Orbit 6.6. (e) Orbit 6.7. (f) Orbit 6.8.

(g) Orbit 6.9.

Figure 6: Group PGL2(5): seven orbits of size 1.
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Figure 7: Group AGL1(7): orbit 7.1 of size 2.

(a) Orbit 7.2. (b) Orbit 7.3.

Figure 8: Group L3(2): two orbits of size 2.

Figure 9: Group AΓL1(8): orbit 8.1 of size 4.

(a) Orbit 8.2. (b) Orbit 8.3.
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(c) Orbit 8.4. (d) Orbit 8.5.

(e) Orbit 8.6.

(f) Orbit 8.7.

Figure 10: Group ASL3(2): five orbits of size 2 and one orbit of size 4.

(a) Orbit 8.8. (b) Orbit 8.9.

Figure 11: Group L2(7): two orbits of size 1.
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(a) Orbit 8.10.

(b) Orbit 8.11. (c) Orbit 8.12.

(d) Orbit 8.13. (e) Orbit 8.14.

(f) Orbit 8.15.

Figure 12: Group PGL2(7): five orbits of size 1 and one orbit of size 2.
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Figure 13: Group AΓL1(9): orbit 9.1 of size 2.

(a) Orbit 9.2. (b) Orbit 9.3.

Figure 14: Group AGL2(3): two orbits of size 2.

(a) Orbit 9.4.

(b) Orbit 9.5(a). (c) Orbit 9.5(b).

Figure 15: Group L2(8): three orbits of size 1.
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(a) Orbit 9.6.

(b) Orbit 9.7(a). (c) Orbit 9.7(b).

(d) Orbit 9.8.

Figure 16: Group PΓL2(8): three orbits of size 2 and one orbit of size 4.

(a) Orbit 10.1.
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(b) Orbit 10.2. (c) Orbit 10.3.

Figure 17: Group PGL2(9): three orbits of size 1.

(a) Orbit 10.4. (b) Orbit 10.5.

Figure 18: Group PΓL2(9): two orbits of size 1.

Figure 19: Group L2(11) acting on 11 points: orbit 11.1 of size 2.
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Figure 20: Group M11: orbit 11.2 of size 2.

(a) Orbit 12.1. (b) Orbit 12.2.

(c) Orbit 12.3.

Figure 21: Group M11 acting on 12 points: two orbits of size 2 and one orbit
of size 6.
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(a) Orbit 12.4. (b) Orbit 12.5.

(c) Orbit 12.6. (d) Orbit 12.7.

(e) Orbit 12.8. (g) Orbit 12.10.

(f) Orbit 12.9.
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(h) Orbit 12.11. (i) Orbit 12.12.

Figure 22: Group M12: 8 orbits of size 2 and one orbit of size 4.

(a) Orbit 12.13.

(b) Orbit 12.14.

Figure 23: Group PGL2(11): two orbits of size 2.

34



(a) Orbit 13.1.

(b) Orbit 13.2.

(c) Orbit 13.3.

Figure 24: Group L3(3): three orbits of size 4.

Figure 25: Group L2(13): orbit 14.1 of size 1.
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(a) Orbit 14.2.

(b) Orbit 14.3.

Figure 26: Group PGL2(13): two orbits of size 2.

(a) Orbit 15.1. (b) Orbit 15.2.
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(c) Orbit 15.3.

Figure 27: Group L4(2): three orbits of size 2.

(a) Orbit 16.1.

(b) Orbit 16.2. (c) Orbit 16.3.
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(d) Orbit 16.4.

Figure 28: Group AGL4(2): three orbits of size 2 and one orbit of size 6.

Figure 29: Group AΓL2(4): orbit 16.5 of size 2.

Figure 30: Group L2(16): orbit 17.1 of size 1.

38



Figure 31: Group L2(16) : 2: orbit 17.2 of size 1.

Figure 32: Group PGL2(19): orbit 20.1 of size 3.
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Figure 33: Group PΓL3(4): orbit 21.1 of size 2.

Figure 34: Group M23: orbit 23.1 of size 4.
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Figure 35: Group M24: orbit 24.1 of size 2.

Figure 36: Group M24: orbit 24.2 of size 2.

Figure 37: Group M24: orbit 24.3 of size 2.
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Figure 38: Group M24: orbit 24.4 of size 10.
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Figure 39: Group M24: orbit 24.5 of size 2.

Figure 40: Group L5(2): orbit 31.1 of size 6.
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Figure 41: Group ASL5(2): orbit 32.1 of size 6.
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