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Abstract

We present a number of examples to illustrate the use of small
quotient dessins as substitutes for their often much larger and more
complicated Galois (minimal regular) covers. In doing so we employ
several useful group-theoretic techniques, such as the Frobenius char-
acter formula for counting triples in a finite group, pointing out some
common traps and misconceptions associated with them. Although
our examples are all chosen from Hurwitz curves and groups, they are
relevant to dessins of any type.

MSC Classification: primary 14H57, secondary 20B25.
Key words: Hurwitz curve, Hurwitz group, dessin d’enfant, automorphism
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1 Introduction

When Grothendieck wrote his Esquisse d’un Programme, he famously ex-
pressed his delight that basic objects such as plane trees, and other sim-
ple drawings, could encode highly sophisticated mathematical structures,
namely algebraic curves defined over number fields. Indeed, such was his
pleasure in the elegance and power of this data compression that he used
the childish-looking nature of these sketches in giving them the name of
dessins d’enfants, which has now come to represent a vast mathematical
theory (see [20, 26, 27] for instance).

The recent proof by González-Diez and Jaikin-Zapirain [21] that regular
dessins provide a faithful representation of the absolute Galois group has
focussed attention even more closely than before on these highly symmetric
objects, those dessins for which the associated Bely̆ı function is a regular
covering. Every dessin D is the quotient of some regular dessin R = D̃
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where D̃ is the Galois (minimal regular) cover of D, by a subgroup H of
the automorphism group G of R; this latter group is also realised as the
monodromy group of D, or equivalently of its associated Bely̆ı function,
regarded as a branched covering of the sphere; this is a permutation group
acting transitively on the fibre over a base-point, with H as a point-stabiliser.

A common situation is that in which a dessin D, which is ‘small’ in
some sense (having low genus, or few edges, for example) is used in this way
as a substitute for a much larger regular dessin R. The latter is uniquely
determined as the Galois cover of D provided G acts faithfully on the cosets
of H, that is, the core of H in G is trivial, in which case we will call D a
faithful quotient of R. For instance, one can see this idea in action, even
before the era of dessins, in the use by Conder [7, 8] of Graham Higman’s
technique of ‘sewing together coset diagrams’ to realise large alternating and
symmetric groups as quotients of triangle groups. Similarly, Jendrol’, Nedela
and Škoviera [25] have used this idea to obtain new results and new proofs
of old ones for graphs and for maps on surfaces.

Our aim in this paper is to explore this relationship between regular
dessins R and their faithful quotients D, with its occasional unexpected sub-
tleties. We do this through a series of examples, chosen with the secondary
aim of illustrating some useful techniques from group theory (finite, discrete
and computational) for enumerating, constructing and classifying dessins of
various types associated with specific groups. Our examples are all Hurwitz
groups and curves, those attaining Hurwitz’s upper bound [24] of 84(g − 1)
for the number of automorphisms of a curve of genus g ≥ 2. This choice
is purely for personal and historical interest since the corresponding dessins
are extremely rare. (Conder [12] listed all the regular dessins of genus 2 to
101; their total number is 19 029, and only seven of them attain the Hurwitz
bound.) Nevertheless, the methods we describe can in fact be applied to
dessins of any type.

There are no new theorems in this paper. Indeed, the only proof we offer
is really a disproof, of the occasional and erroneous assertion that the Hurwitz
group of genus 17 is isomorphic to the affine group AGL3(2). These two
groups do indeed look very similar, both being extensions of an elementary
abelian normal subgroup of order 8 by GL3(2); however, the affine group is
a split extension, while the Hurwitz group is not. We also exhibit certain
traps to avoid while using irreducible characters and the Frobenius formula
to count the number of dessins with a given monodromy group.

We will use many well-known facts concerning the inner structure of
various finite groups. Unfortunately (and obviously), we are unable to fill
in all the necessary details, since otherwise the paper would be enlarged ad
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infinitum. In a few occasions we supply the reader with some details but in
most cases he or she should consult other sources on group theory.

Acknowledgement The authors gratefully thank Jarke van Wijk for giving
permission to use his beautiful pictures of maps (Figures 6 and 8), and the
referee for some very helpful suggestions. The second author is partially
supported by the research grant Graal ANR-14-CE25-0014.

2 Background details

2.1 Dessins

By Bely̆ı’s Theorem, a compact Riemann surface S, regarded as a complex
projective algebraic curve, is defined over a number field if and only if it
admits a Bely̆ı function, a non-constant meromorphic function f : S →
P1(C) ramified over at most three points (which one can, without loss of
generality, take to be 0, 1 and ∞). The monodromy group G of the Bely̆ı
pair (S, f) is the monodromy group of the covering of the thrice-punctured
sphere P1(C) \ {0, 1,∞} induced by f , that is, the permutation group on
the sheets (more precisely on the fibre over a base-point) induced by unique
lifting of closed paths. If f has degree n then G is a transitive subgroup of
the symmetric group Sn, generated by the local monodromy permutations
x, y and z around 0, 1 and ∞, satisfying xyz = 1. By the Riemann Existence
Theorem, these three permutations define S and f up to isomorphism.

Following Grothendieck, one can represent f by means of a bicoloured
map on S, called a dessin D, with the fibres over 0 and 1 as the black and
white vertices, and the unit interval lifting to the n edges, one on each sheet
of the covering. Then the permutations x and y represent the rotations of the
edges around their incident black and white vertices, while the permutation
z = (xy)−1 rotates edges, two steps at a time, around incident faces.

The automorphism group Aut(D) of a dessin D is the group of covering
transformations of f , or equivalently the centraliser of G in Sn. A dessin D
is regular if the covering is regular, that is, if Aut(D) acts transitively on the
edges, in which case Aut(D) ∼= G.

The type of a dessin, or of a triple (x, y, z), is the triple of orders of
x, y and z. Rather more information is conveyed by the passport , by which
we mean the ordered triple of partitions of n giving the cycle-structures
of x, y and z. These correspond to the conjugacy classes of Sn containing
these permutations, but in some cases we will give more precise information
by referring to the passport as the triple of their conjugacy classes in the
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monodromy group G which they generate.
In cases where y2 = 1 the white vertices of the dessin are redundant and

may be omitted, so that fixed points of y are now represented by free edges
(one end of which is a vertex while the other remains free), and 2-cycles by
traditional edges or loops. The edges of the original dessin now correspond to
the half-edges of the resulting map, and the monodromy group of the dessin
can be identified with that of the map, now permuting half-edges. In some
of our examples, we will use this simplification without further comment.

For further background reading we suggest [20, 26] or [27].

2.2 The Frobenius formula

For a given finite group G, the regular dessins of type (p, q, r) with automor-
phism group G are in bijective correspondence with the torsion-free normal
subgroups N of the triangle group

∆ = ∆(p, q, r) = 〈X,Y,Z | Xp = Y q = Zr = XY Z = 1〉
with ∆/N ∼= G. These subgroups N correspond bijectively to the orbits
of Aut(G) on generating triples (x, y, z) of elements of orders p, q and r in
G satisfying xyz = 1. Since the action of Aut(G) on generating triples is
semiregular, meaning that only the identity element has fixed points, the
number of orbits, and hence of dessins, is equal to the number of such triples
divided by |Aut(G)|. The first step in the calculation of this number is to use
the following classical result [19] (for a modern treatment see [32, Ch. 7]):

Theorem 2.1 (Frobenius) Let X , Y and Z be conjugacy classes in a finite

group G. Then the number of solutions in G of the equation xyz = 1, where

x ∈ X , y ∈ Y and z ∈ Z, is given by the formula

|X | · |Y| · |Z|
|G|

∑

χ

χ(x)χ(y)χ(z)

χ(1)
,

where the sum is over all irreducible complex characters χ of G.

Remark 2.2 The first part of this formula, omitting the character sum, can
be regarded as a naive guess for the number of solutions, assuming that the
values of xyz are evenly distributed over the elements of G. Of course, in
general they are not, and the character sum can be regarded as a correction
term, taking into account the particular structure of the chosen group G. In
many cases the character sum is dominated by the contribution, equal to 1,
from the principal character, in which case the naive guess is not far from
the correct answer.
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Remark 2.3 This is a particular case of a more general formula for the
number of solutions of x1 . . . xk = 1 in G, where each xi is chosen from a
specific conjugacy class. The only part of the generalisation which is not
obvious is the denominator in the character sum, which is χ(1)k−2. For this,
and other similarly useful formulae, see [32, Ch. 7].

Remark 2.4 The Atlas of Finite Groups [13] contains character tables
of many finite simple groups, and of other associated groups. Maple can
compute characters of symmetric groups, and GAP can compute character
tables of arbitrary not-so-big groups.

A conjugacy class X in G has order

|X ] =
|G|

|CG(x)|

where CG(x) is the centraliser in G of an element x ∈ X , and similarly,
for Y and Z. The Atlas gives orders of centralisers, rather than those of
conjugacy classes.

The Frobenius formula gives us the number of triples in G with passport
(X ,Y,Z). To obtain the number of triples of type (p, q, r), one simply takes
the sum of these numbers over all triples of conjugacy classes X ,Y and Z
consisting of elements of orders p, q and r.

Suppose we are given a triple π = (λ, µ, ν) of partitions of number n, and
we would like to know the number of dessins with the passport π. Enumer-
ative combinatorics gives an explicit answer only in very specific cases, such
as, for example, for plane trees. In more complicated cases, an invaluable,
and in most cases the only source of information is the Frobenius formula.
But it must be used with care.

Let us discuss first the case of the symmetric group G = Sn. Since in
this case a cycle-structure uniquely determines the corresponding conjugacy
class, it seems that we can then apply the Frobenius formula directly. There
is, however, a trap to avoid: a triple of permutations (x, y, z) with cycle-
structures (λ, µ, ν) does not necessarily generate a transitive subgroup of Sn.
We must find a way to eliminate these non-transitive solutions.

The next difficulty to resolve is the fact that the edges of the same
dessin D may be labelled in many different ways. To be specific, the number
of labellings is n!/|Aut(D)|. Therefore it is reasonable to divide the num-
ber of triples of permutations by n!: in this way we will get the “number”
of non-isomorphic dessins, each one of them being counted with the weight
1/|Aut(D)|.
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Example 2.5 Let us take n = 12 and look for those maps with the passport
π = (61312111, 26, 61312111). Computing the corresponding characters using
Maple, applying the Frobenius formula and dividing the result by 12! we get
191

2
. In fact, the correct answer is 18. Two more “maps” are non-connected,

and one of them has a non-trivial automorphism of order 2, so that its
contribution to the sum is 1/2.

Now suppose that we work inside a group G different from Sn. Then, the
next difficulty arises: we can come across a cycle-structure corresponding
to several different conjugacy classes. For example, in the group PSL2(27)
(in its natural representation of degree n = 28), which will be treated in
Section 7, there are two conjugacy classes X1, X2 of elements with cycle-
structure 3911, one conjugacy class Y of elements with cycle-structure 214,
and three conjugacy classes Z1, Z2, Z3 with cycle-structure 74. Thus, looking
for dessins with passport π = (3911, 214, 74) we must take into account six
possible combinations of conjugacy classes.

Return now to the problem with many possible labellings of edges of the
same dessin. If we want to stay inside a given group G and not to be sent to
one of its conjugate copies, division by n! would be not a good idea. We are
tempted to divide the number of triples (x, y, z) by |G|. But there is a trap
which awaits us here, and it is much more subtle than the previous ones!
A significant part of our paper is devoted to untangling the complications
arising in this case. See in this respect the discussions in §3.4 and Sections 5
and 7.

Finally, a triple (x, y, z) of permutations belonging to a group G may
generate not the entire group G but only a proper subgroup. If we are
interested in triples generating G itself we need to do more work depending
on the particular group and its structure. One possible technique for doing
this is discussed in the next section.

2.3 Möbius inversion in groups

Instead of counting all triples of a given type (p, q, r) in G, we need to
count generating triples of that type. Occasionally it is obvious which triples
generate G (all of them in some cases), but in general a more systematic
method, based on P.Hall’s theory of Möbius inversion in groups [22], is
available.

Given a type (p, q, r), let σ(H) denote the number of triples of that type
in each subgroup H ≤ G, and let φ(H) denote the number of them which
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generate H. Since each triple in G generates a unique subgroup, we have

σ(G) =
∑

H≤G

φ(H). (1)

As shown by Hall, equation (1) can be inverted, reversing the roles of the
functions σ and φ, to give

φ(G) =
∑

H≤G

µG(H)σ(H), (2)

where µG is the Möbius function on the lattice of subgroups of G, recursively
defined by ∑

K≥H

µG(K) = δH,G , (3)

with δ denoting the Kronecker delta.
Although for many finite groups G, such as all but a few of the alternating

and symmetric groups, the subgroup lattice is too complicated to allow µG

to be calculated, this has been achieved for several classes of groups. For
instance Hall dealt with nilpotent groups and the groups PSL2(p) (p prime)
in [22], and the latter calculation was extended by Downs [16] to PSL2(q) and
PGL2(q) for all prime powers q. He and the first author have recently dealt
with the Suzuki groups in [17], and Pierro with the ‘small’ Ree groups in [31].
In many cases (for instance, if H is not an intersection of maximal subgroups
of G) we find that µG(H) = 0, so such subgroups H can be omitted from
the summation in equation (2). By using the Frobenius formula to evaluate
σ(H) for subgroups H ≤ G with µG(H) 6= 0 one can determine φ(G), and
hence obtain the number φ(G)/|Aut(G)| of regular dessins of a given type
with automorphism group G.

The examples we present later in this paper do not in fact require Möbius
inversion, since in most cases it is easy to see that the relevant triples generate
the whole group. However, there are more complicated cases, such as those
considered in [17, 31], where it cannot be avoided.

Hall’s theory has much wider applications than that of counting triples
described here. In its most general form, it can be used to count the nor-
mal subgroups of any finitely generated group with a given finite quotient
group. For instance, Hall showed that the free group of rank 2 has 19 nor-
mal subgroups N with quotient isomorphic to the alternating group A5; it
follows that there are 19 regular dessins R with Aut(R) ∼= A5 (described
in [2]), and since this group has eight faithful transitive permutation repre-
sentations, there are 19 · 8 = 152 dessins D with monodromy group A5.
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2.4 Hurwitz groups and surfaces

We have chosen all our examples from the historically important Hurwitz
groups. A Hurwitz group G is a finite group which attains Hurwitz’s upper
bound [24] of 84(g−1) for the order of the automorphism group of a compact
Riemann surface of genus g ≥ 2. Equivalently, G is a non-trivial finite quo-
tient ∆/N of the triangle group ∆ = ∆(2, 3, 7), acting as the automorphism
group of the Riemann surface S = H/N (called a Hurwitz surface or Hurwitz

curve), where H is the hyperbolic plane. As such, G is the automorphism
group of a regular dessin R on S, called a Hurwitz dessin; regarded as a
map, this is a trivalent tessellation by heptagons, or its dual, a 7-valent tri-
angulation. The number of such surfaces and dessins associated with G, up
to isomorphism, is equal to the number of normal subgroups N of ∆ with
∆/N ∼= G. Note that since its three periods are mutually coprime, ∆ is
a perfect group (that is, it has no non-trivial abelian quotient groups), and
hence so is every Hurwitz group G. In particular, this implies that a Hurwitz
group cannot be solvable.

The choice of the parameters (p, q, r) = (2, 3, 7) is explained as follows.
A regular dessin of type (p, q, r) with an automorphism group G of order
|G| = n has n/p black vertices of valency p, n/q white vertices of valency q,
n/r faces of valency r, and n edges. Its Euler characteristic is thus equal to

2− 2g =
n

p
+

n

q
+

n

r
− n.

In order to get a negative Euler characteristic with the least possible genus
(when n is given) we should have the sum 1/p + 1/q + 1/r less than 1 but
as close to 1 as possible. The triple (2, 3, 7) obviously provides the answer.
Then

2− 2g = n

(
1

2
+

1

3
+

1

7
− 1

)
= − n

42

which gives n = 84(g − 1).

Remark 2.6 For convenience of drawing, we will regard ∆ as the triangle
group ∆(3, 2, 7), so that R and its quotient dessins D have type (3, 2, 7)
rather than (2, 3, 7). Writing the periods in that order means that the black
and white vertices have valencies dividing 3 and 2 respectively; this allows us
in Figures 4, 5 and 16 to represent dessins more simply as uncoloured maps,
by leaving the white vertices implicit (so that those of valency 1 give rise to
free edges). However, in Figures 7, 9 and 10 only white vertices of valency 2
are omitted, and elsewhere we will show all white vertices explicitly.
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Many non-abelian finite simple groups are now known to be (or known
not to be) Hurwitz groups: see the surveys by Conder [10, 11]. For example,
we have the following theorem [30]:

Theorem 2.7 (Macbeath) The group G = PSL2(q) is a Hurwitz group if

and only if one of the following holds:

1. q = 7, or

2. q is a prime p ≡ ±1 mod (7), or

3. q = p3 for some prime p ≡ ±2 or ±3 mod (7).

In cases (1) and (3) the Hurwitz surface and dessin associated with G are

unique, but in case (2) there are three of each, corresponding to three normal

subgroups N of ∆ with quotient G.

Of course, by Dirichlet’s theorem on primes in arithmetic progressions
there are infinitely many examples satisfying each of the congruences in cases
(2) and (3).

3 Klein’s curve

In this section we take R to be the regular dessin of type (3, 2, 7) on Klein’s
quartic curve

u3v + v3w + w3u = 0,

the Hurwitz surface of least genus, namely g = 3. The automorphism group
G of both R and the curve is the smallest Hurwitz group, namely GL3(2) =
SL3(2) = PSL3(2), of order 168, also isomorphic to PSL2(7). We will try to
represent R as the minimal regular cover D̃ of a smaller dessin D = R/H
where H ≤ G.

3.1 PSL3(2)

Since G is simple, it acts faithfully on the cosets of any proper subgroup.
The subgroups of G are well-known, and the smallest index of any proper
subgroup H is 7, with H, the stabiliser of a point in the Fano plane Π :=
P2(2), isomorphic to the symmetric group S4. We therefore first look for
quotient dessins D = R/H of degree 7, arising from the action of G as the
automorphism group of Π.

Let us construct Π by using the difference set {0, 1, 3} (equivalently,
the set {1, 2, 4} of quadratic residues) in the additive group of the field F7:
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every non-zero residue modulo 7 appears exactly once as the difference of
two elements of this set. Then the lines are the translates of this set, see
Figure 1.

0 1 3
1 2 4
2 3 5
3 4 6
4 5 0
5 6 1
6 0 2

1 4

6 3

2

0

5

Figure 1: The Fano plane.

By construction, this geometry has the following automorphism:

γ = (0, 1, 2, 3, 4, 5, 6) : a 7→ a+ 1 mod (7).

Consider a clockwise rotation of our figure through 120◦. The point 0 is fixed,
so we get the permutation x which we will use as a black vertex permutation
of a dessin we are looking for:

x = (1, 5, 2)(3, 4, 6).

This permutation gives us the left tree in Figure 2. The permutation z
defining the (only) face in this case is equal to

z = γ3 = (0, 3, 6, 2, 5, 1, 4) : a 7→ a+ 3 mod (7).

The tree on the right in the same figure is given by permutations x−1 and
z−1 = γ4.

The involutions which correspond to the white vertices may be inter-
preted as mirror symmetries of our geometry with respect to a line. Indeed,
the involution y = (0, 4)(1, 6), corresponding to the left tree, preserves point-
wise the line {2, 3, 5} and preserves set-wise the lines {5, 0, 4} and {5, 1, 6}.
Hence, it is the “mirror symmetry” with respect to the line {2, 3, 5}. Analo-
gously, the involution of the right tree is the symmetry with respect to the
line {5, 6, 1}.
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4

2

1

6

0

3
1

2

4

6

3

0

Figure 2: Trees providing a (3, 2, 7)-generation of the group PSL3(2).

Remark 3.1 We did not prove that the monodromy group G of the trees
is indeed the whole group PSL3(2) and not a proper subgroup. However, G
clearly has order divisible by 3 · 2 · 7 = 42, so it has index m ≤ 4 in PSL3(2).
Hence its core (intersection of all conjugates) is a normal subgroup of index at
most 4!, since it is the kernel of the homomorphism PSL3(2) → Sm induced
by the action of PSL3(2) on the cosets of G. Since PSL3(2) is simple and of
order greater than 4!, the core, and hence also G, must be the whole group.

Remark 3.2 It is interesting to note that Klein’s curve is a remarkable (and
complicated) object. A book [28] of 340 pages has been devoted to the study
of various properties of this curve. However, our simple picture proves the

existence of such a curve.

3.2 Character table and Frobenius’s formula for PSL3(2)

The above construction is consistent with the information provided to us by
the character table of the group PSL3(2). The table, computed by GAP, is
shown in Table 1. (It can also be found in the Atlas [13], where this group
is denoted by L2(7).)

The six conjugacy classes of elements of the group are denoted in the table
by 1a, 2a, etc. The notation used in the Atlas, which we adopt below, is
1A, 2A, . . . The first digit gives the order of the elements of the class. We see,
for example, that there are two conjugacy classes 7A and 7B of elements of
order 7. The notation X.1, X.2, etc. is used for the irreducible characters;
we will use more standard Atlas notation χ1, χ2, . . . for characters. A dot
in the table means zero; E(7) is the primitive 7th root of unity; finally, /A
means the complex conjugate of A.

The character of the permutation representation of degree 7 is χ1 + χ4;
its value on a given class is the number of fixed points. We see that for the
class 2A it is equal to 3, thus giving us the cycle-length partition 2213; for
3A this value is 1, which gives us the partition 3211; and for the classes 7A
and 7B the number of fixed points is, naturally, zero.

11



1a 2a 4a 3a 7a 7b

X.1 1 1 1 1 1 1

X.2 3 -1 1 . A /A

X.3 3 -1 1 . /A A

X.4 6 2 . . -1 -1

X.5 7 -1 -1 1 . .

X.6 8 . . -1 1 1

A = E(7)^3+E(7)^5+E(7)^6

= (-1-Sqrt(-7))/2 = -1-b7

Table 1: Character table of the group PSL3(2) ∼= PSL2(7) computed by GAP.

The sizes of the classes 3A, 2A and 7A, also computed by GAP, are,
respectively, 56, 21 and 24. Therefore, the Frobenius formula for the passport
(3A, 2A, 7A) gives us 168 triples (x, y, z) with entries in these classes and
xyz = 1. We obtain the same number for the passport (3A, 2A, 7B), so the
total number of triples of type (3, 2, 7) is 336 = 2|G|. As shown in Remark 3.1
they all generate G. Now Aut(G) is an extension of G by a cyclic group C2,
induced by duality of the plane Π. (Alternatively, if we identify G with
PSL2(7) as in Section 3.3, then Aut(G) can be identified with PGL2(7); see
Section 3.4 for more details.) Dividing by |Aut(G)| = 2|G| we see that there
is one regular dessin R of type (3, 2, 7) with automorphism group G.

Finally, the presence of
√
−7 in the character table suggests that the

trees, being considered as dessins d’enfants, should be defined over the field
Q(

√
−7). And, indeed, the computation of Bely̆ı functions confirms this

hypothesis:
f(t) = K · (t2 + 7a)3 (t− 7),

f(t)− 1 = K · (t2 − 6t+ a)2 (t3 + 5t2 + (19a+ 24)t+ (83a + 108)),

where

K = − 1

2633(7a+ 17)
,

and a is a root of
a2 + 3a+ 4,

that is,

a = −3

2
± 1

2

√
−7.
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Choosing one of the two values of a we get one of the two trees. Namely, its
two black vertices of valency 3 are roots of t2 + 7a; its only black vertex of
valency 1 lies at the point t = 7; its two white vertices of valency 2 are roots
of t2 − 6t+ a; and, finally, its three white vertices of valency 1 are roots of
t3 + 5t2 + (19a + 24)t + (83a + 108). Being a polynomial, f has a pole of
multiplicity 7 at infinity: it corresponds to the (only) face of valency 7. For
any s /∈ {0, 1,∞} the equation f(t) = s does not have multiple roots.

An interesting observation is that the cubic factor

P (t) = t3 + 5t2 + (19a + 24)t+ (83a + 108)

in the function f − 1 factorizes over the field Q(
√
−7). Namely, P = Q · R

where

Q(t) = t2 + (1 +
√
−7)t+

−31 + 13
√
−7

2
, R(t) = t+ (4−

√
−7).

Thus, one of the three white vertices of valency 1 is separated from the other
two: it does not belong to the same Galois orbit. This vertex is shown in
Figure 3.

Figure 3: White vertex of valency 1 which is not Galois-conjugate to the other
two.

3.3 PSL2(7)

Ever since the time of Galois it has been known that PSL3(2) is isomorphic
(as an abstract group) to PSL2(7): the former group acts on the seven
points of the Fano plane Π, whereas the latter acts on the eight points of the
projective line P1(7) over the field F7, that is, on the set

{0, 1, 2, 3, 4, 5, 6,∞}.

The character of this permutation representation is χ1 + χ5, see Table 1.
Therefore, the permutations in the class 3A have two fixed points, those in
the class 2A have none, and for the classes 7A and 7B the number of fixed
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points is one. We thus obtain the passport (3212, 24, 7111). It is easy to see
that there exists only one map with this passport: it is shown in Figure 4.
Once again, we can only marvel at the fact that this simple dessin provides
us a (3, 2, 7)-presentation of the group PSL2(7) and thus, in the bud, with
all the information we need in order to construct the Klein curve.

Figure 4: A map with the monodoromy group PSL2(7). White vertices in the
middle of the edges are implicit.

Labels shown in Figure 5 (left) give the following permutations obviously
belonging to PSL2(7):

y : a 7→ −1

a
, z : a 7→ a+ 1,

while x can be easily computed using the relation xyz = 1:

x = (yz)−1 : a 7→ − 1

a− 1
.

Remark 3.3 We multiply permutations from left to right, as is usual in
symbolic calculation systems. But if we want, in our case, to represent the
above fractional linear functions x, y, z as 2× 2-matrices X,Y,Z, then these
matrices should be multiplied in the inverse order: xyz = 1 but ZY X = I.
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1
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6
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4

3

2

1

Figure 5: (3, 2, 7)-generators of the group PSL2(7). In the right map, as compared
with the left one, the permutation z ∈ 7A is replaced with z−1 ∈ 7B. Notice that
the involution y remains the same.
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3.4 Uniqueness of quotients

Why, in the case of PSL2(7), is the quotient dessin unique (and defined
over Q), whereas in the case of PSL3(2) we obtain a chiral pair defined over
Q(

√
−7)? The answer is that G has only one conjugacy class of subgroups

H of index 8, but two of index 7, and non-conjugate subgroups give non-
isomorphic quotients. The subgroups of index 7 are the stabilisers of points
or of lines in the Fano plane Π, forming two conjugacy classes of size 7, all
isomorphic to S4. These two classes are transposed by the outer automor-
phism group Out(G) (corresponding to the duality of Π), just as this group
transposes the conjugacy classes 7A and 7B of elements of order 7 in G. We
therefore have four possible choices when forming quotient dessins of degree
7: there are two possibilities (up to conjugacy) for the subgroup H, and two
(again up to conjugacy) for the element z. Since Out(G) transposes the two
choices in each case, it has two orbits on these four possibilities, correspond-
ing to two non-isomorphic dessins, transposed by changing our choice for
H or for z (but not both!). In the case of quotients of degree 8, however,
there is a single conjugacy class of subgroups H of this index, namely the
stabilisers of points in P1(7); our two possible choices for the class of z are
transposed by Out(G), so they lead to isomorphic dessins.

In general, the number of faithful quotients of degree n of a regular map
R is the number of conjugacy classes of subgroups of index n in G = Aut(R)
with trivial core. Of course, when n = |G| there is a unique quotient, namely
R itself, corresponding to the identity subgroup.

Figure 6: The Klein map of genus 3. The author of the picture is Jarke van Wijk.
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We finish this section with a picture of the Klein map on the surface of
genus 3. The map contains 24 heptagonal faces and 56 vertices of degree 3.
The picture, see Figure 6, was created by Jarke van Wijk from the Eindhoven
University of Technology.

4 The Fricke–Macbeath curve

In 1899, in the same issue of the journal “Mathematische Annalen”, two
papers were published. In the first one [4], by Burnside, it was shown that
the simple group PSL2(8) has a (3, 2, 7)-presentation; according to a tradition
of that era, no motivation for this result was given. In the second paper [18],
Fricke constructed a Riemann surface of genus 7 with the automorphism
group PSL2(8) of order 504 = 84 · 6, that is, of maximal size for that genus.
Later on this surface was rediscovered by Macbeath [29].

Thus, for us, in order to prove the result of Burnside and Fricke, it suffices
to produce a (3, 2, 7)-presentation of the group PSL2(8). Such a presentation
is shown in Figure 7, by which we mean that this map of type (3, 2, 7) has
monodromy group PSL2(8).

Figure 7: A map with monodromy group PSL2(8).

It would not be an easy task to give a “purely mathematical” proof of the
above statement, that is, one which is not computer-assisted. Indeed, since
this dessin of degree 9 corresponds to the natural representation of G, the
edge labels should be the elements of the projective line P1(8) over F8, and
the elements of this field should, in turn, be represented as polynomials of
degree 2 with coefficients in F2. But today, using Maple or GAP, we can in a
fraction of a second compute the order of the group, which is 504, and then
look at the catalogue [6] and see that there is only one permutation group
of degree 9 and of order 504.

Remark 4.1 An ambitious question we would like to ask is as follows:
what kind of information about a “big” regular map with an automorphism
group G can we extract from a “small” quotient map with a monodromy
group G? In the above example, it is easy to see that Figure 7 is the only
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possible (3, 2, 7)-map of degree 9. Therefore, it is defined over Q. We may
(or may we, indeed?) infer from this that a (3, 2, 7)-presentation of the group
PSL2(8) is unique up to an automorphism, and therefore the Hurwitz map
of genus 7 is also unique and defined over Q. However, Manfred Streit [34]
showed that the latter map cannot be realized over Q, and Rubén Hidalgo [23]
managed to realize it over Q(

√
−7). Can this be seen from Figure 7?

Figure 8: The Fricke–Macbeath map of genus 7 with the automorphism group
PSL2(8) of order 504 = 84 · 6. The author of the picture is Jarke van Wijk.

Figure 8 shows the Fricke–Macbeath map. This chef-d’oeuvre of com-
puter graphics was made by Jarke van Wijk [35]. According to van Wijk, the
pictures of this kind are produced by tubification of graphs [36]. We take a
graph, chosen to have Betti number E−V +1 equal to the genus of the map,
where V and E are the numbers of vertices and edges of the graph. This
graph is then embedded in three-dimensional space, if possible exhibiting
some group of symmetries which it shares with the map. We then replace
its vertices and edges with spheres and tubes, thus creating a surface on
which the desired map may be drawn. The main difficulty of this approach
is that there are infinitely many non-isomorphic graphs with a given Betti
number (and not all of them planar, by the way). Permutations representing
the map give us complete information about the map itself, but tell us ab-
solutely nothing about a convenient structure of a graph to be tubified and
about its possible embedding into R3.

Figures 2, 4 and 7 constitute a complete list of (3, 2, 7)-maps with a single
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face of degree 7. In subsequent sections we will examine all the (3, 2, 7)-maps
with two faces of degree 7.

5 Three Hurwitz maps of genus 14

For our next example we take G to be the Hurwitz group PSL2(13) of
genus 14 and order 84 · 13 = 1092. As for all groups PSL2(q) with q > 11,
the transitive permutation representation of least degree is the natural rep-
resentation, of degree q + 1 = 14, so we look for possible quotient dessins D
of this degree. The point stabilisers are isomorphic to C13 ⋊ C6. The group
G has unique conjugacy classes 3A and 2A of elements of order 3 and 2, but
it has three self-inverse conjugacy classes, 7A, 7B and 7C, of elements of
order 7; those in 7B and 7C are the squares and fourth powers of those in
7A. (This applies to all the Hurwitz groups PSL2(q) with q 6= 7.) For each
of these classes, if we combine it with the classes 3A and 2A, the Frobenius
formula gives 2|G| triples, all generating G since no proper subgroup of G is
a Hurwitz group. (There are four conjugacy classes of maximal subgroups of
G, isomorphic to C13 ⋊C6, D7, D6 and A4; none of them has order divisible
by 2, 3 and 7.) Since Aut(G) = PGL2(13) has order 2|G|, leaving each of the
three classes of elements of order 7 invariant, we obtain three regular dessins
R, one for each class. As Streit [34] has shown, they form a Galois orbit,
defined over the field Q(cos(2π/7)). (The entries in the character table of G
also belong to this field.)

Figure 9: Hurwitz generation of PSL2(13).

The corresponding quotient dessins D of degree 14 are shown in Figure 9.
They also form a single Galois orbit, so at first it is a little disturbing to see
that the map on the left is invariant under a reflection, whereas the other two
are not, and nor are they mirror images of each other. However, if we draw
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these two as maps on the sphere, then in each case the antipodal involution
provides the expected orientation-reversing isomorphism. These two maps
also illustrate the Couveignes–Filimonenkov phenomenon: they are defined,
but cannot be realized over a real field. Does their antipodal symmetry mean
something interesting for the corresponding regular maps R of genus 14?

This example illustrates a general phenomenon, in which all the Mac-
beath–Hurwitz groups PSL2(q) for q 6= 7 or 27 have unique classes of el-
ements of orders 3 and 2, but three of order 7; one can show by direct
calculation with Möbius transformations or by the Frobenius formula that
each choice of classes of elements of these orders gives 2|G| generating triples
of type (3, 2, 7), resulting in a total of 6|G| triples.

Here we obtained three Hurwitz dessins R, one for each class of elements
of order 7, so why did this not happen in our earlier example, where G =
PSL2(8)? The answer is that in that case, and indeed in all examples of
case (3) of Theorem 2.7, where q = p3 for some prime p, Aut(G) is not
PGL2(q) but the larger group PΓL2(q). This is an extension of PGL2(q)
by a cyclic group of order 3 induced by the Galois group Gal(Fq) ∼= C3 of
the field Fq. It acts by permuting the three classes of elements of order 7
transitively, so that the 6|G| triples form a single orbit under Aut(G) and
hence correspond to a single Hurwitz dessin. In case (2) of Theorem 2.7,
with q = p prime, the Galois group of the field is trivial, so the triples form
three orbits, corresponding to three Hurwitz dessins.

Pictures of the corresponding regular maps of genus 14 are not yet avail-
able, certainly because of the problem with their spatial arrangement.

6 Genus 17

There remain nine (3, 2, 7)-maps with two faces of degree 7. Six of them are
shown in Figure 10, three more are given in Figure 16.

All six maps in Figure 10 are imprimitive: they cover the PSL3(2)-trees
we have seen before. Figure 11 proposes a labelling of the maps in the first
row of Figure 10 for which the blocks are the same. These blocks are shown in
Table 2, while the action of the permutations on blocks and the ramification
points may be seen in Figure 12.

Indeed, let us write the permutations describing the maps of Figure 11
and their action on the blocks. Here are permutations which correspond
to the left map, and also to the left tree of Figure 12. We see that the
permutations x and z are unramified while y is ramified over the vertices
a and b of the tree. The corresponding cycles of y are underlined and the
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Figure 10: Six imprimitive maps. There are seven blocks of size 2.
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Figure 11: Labelling of the three upper maps in Figure 10.

a b c d e f g

0 2 4 6 8 10 12

1 3 5 7 9 11 13

Table 2: Blocks of the permutations describing maps in Figure 11.

a

b

c
d e

f

g

a

b

c
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g

a

b

c
d e

f

g

Figure 12: PSL3(2)-trees, labelled with blocks for the maps in Figure 11.
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vertices of the tree are singled out. It is clear that the map which is mirror
symmetric to this one will be ramified over the mirror symmetric tree.

x = (0, 2, 4)(1, 3, 5)(6, 8, 10)(7, 9, 11)(12)(13)

= (a, b, c)(a, b, c)(d, e, f)(d, e, f)(g)(g),

y = (0, 1)(2, 3)(4, 6)(5, 7)(8, 12)(9, 13)(10)(11)

= (a, a)(b, b)(c, d)(c, d)(e, g)(e, g)(f)(f),

z = (0, 5, 11, 9, 13, 7, 3)(1, 4, 10, 8, 12, 6, 2)

= (a, c, f, e, g, d, b)(a, c, f, e, g, d, b).

Permutations for the map in the middle: they are ramified over b and f and
thus correspond to the tree in the middle of Figure 12.

x = (0, 2, 4)(1, 3, 5)(6, 8, 10)(7, 9, 11)(12)(13)

= (a, b, c)(a, b, c)(d, e, f)(d, e, f), (g)(g)

y = (0)(1)(2, 3)(4, 6)(5, 7)(8, 12)(9, 13)(10, 11)

= (a)(a)(b, b)(c, d)(c, d)(e, g)(e, g)(f, f ),

z = (0, 4, 10, 9, 13, 7, 3)(1, 5, 11, 8, 12, 6, 2)

= (a, c, f, e, g, d, b)(a, c, f, e, g, d, b).

Finally, the permutations for the map on the right: they are ramified over a
and f .

x = (0, 2, 4)(1, 3, 5)(6, 8, 10)(7, 9, 11)(12)(13)

= (a, b, c)(a, b, c)(d, e, f)(d, e, f), (g)(g)

y = (0, 1)(2)(3)(4, 6)(5, 7)(8, 12)(9, 13)(10, 11)

= (a, a)(b)(b)(c, d)(c, d)(e, g)(e, g)(f, f ),

z = (0, 4, 10, 9, 13, 7, 3)(1, 5, 11, 8, 12, 6, 2)

= (a, c, f, e, g, d, b)(a, c, f, e, g, d, b).

Recall that the three white vertices of Figure 12 split into two Galois
orbits: the vertex b is separated from the other two (see Figure 3). Therefore
we may suppose that the third map, for which the ramification points avoid
the vertex b, might not behave in the same way as the other two maps. And,
indeed, computing the order of the monodromy group for all three maps we
find out that it is equal to 1344 for the first and second map while it is 168
for the third. Of course, the same is true for their mirror images.

The group of size 168 can only be PSL3(2). The identification of the
Hurwitz group G of size 1344 is a more subtle matter. The catalogue [5]

21



shows that there are three non-isomorphic permutation groups of degree 14
and of order 1344.

One of these three groups cannot be projected onto PSL3(2), so it cannot
arise here. This group is a semidirect product A⋊B of an elementary abelian
normal subgroup A ∼= (C2)

6 by a complement B ∼= AHL1(7) ∼= C7 ⋊ C3,
the subgroup of index 2 in AGL1(7) consisting of the affine transformations
t 7→ at + b of F7 for which a is a non-zero square. (Here ‘H’ stands for
‘half’.) The group acts on the 14 points of the cartesian product F2 × F7,
with elements of A acting on pairs (s, t) by preserving t and changing an
even number of coordinates s, while elements of B preserve s while acting
naturally on t. This action is imprimitive, since the group permutes the seven
pairs {(0, t), (1, t)}. Since the group is solvable, it cannot be a Hurwitz group.

The other two groups are also imprimitive: each is an extension of an el-
ementary abelian normal subgroup T ∼= (C2)

3 by GL3(2) = PSL3(2), where
T is the kernel of the action on seven blocks of size 2. The obvious example
of such a group is the affine group AGL3(2), the group of all affine trans-
formations of a 3-dimensional vector space V over F2: this acts on the 14
affine planes in V , with T as the group of translations, complemented by the
subgroup GL3(2) fixing the vector 0. However, the following argument shows
that our Hurwitz group G must be isomorphic to the third group, which is
a non-split extension of T by GL3(2) while AGL3(2) is a split extension.

If T has a complement C in G, then C lifts to a subgroup M of index 8
in ∆ = ∆(3, 2, 7). Since C, being isomorphic to GL3(2), is simple, its core
in G is trivial, so the core of M in ∆ is a normal subgroup N of index 1344
in ∆. This subgroup M corresponds to a dessin of degree 8 and type (3, 2, 7).
It is easy to see that any dessin of this degree and type must have passport
(3212, 24, 7111), and we saw in §3.3 that the only possibility is the dessin
in Figure 4. However, the monodromy group of this dessin is isomorphic
to GL3(2), so N has index 168 in ∆, a contradiction. Thus G is a non-
split extension of T by GL3(2), and in particular it cannot be isomorphic to
AGL3(2), as is sometimes assumed. (As confirmation of this, G has elements
of order 8, such as yz3, whereas AGL3(2) does not; see also Section 10.) The
group thus obtained is number 33 in Butler’s catalogue [5], and 14T33 in the
database [15].

One can construct this Hurwitz group G homologically as follows. The
normal subgroup K of index 168 in ∆ corresponding to Klein’s quartic curve
is the fundamental group of this surface S of genus 3, so its commutator
quotient group K/K ′ is the abelianised fundamental group, that is, the first
integer homology group H1(S,Z) ∼= Z6. Similarly, if K2 denotes the group
generated by the squares in K then K/K ′K2 is the reduction of H1(S,Z)
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mod 2, namely H1(S,F2) ∼= (F2)
6. This is a 6-dimensional module for the

automorphism group A ∼= GL3(2) of this dessin, and it decomposes as a
direct sum of two irreducible 3-dimensional A-submodules, corresponding to
two normal subgroups N1 and N2 of ∆ lying between K and K ′K2 (see Fig-
ure 13). These subgroups Ni are conjugate in the extended triangle group
∆[3, 2, 7], so they correspond to a chiral pair of regular dessins Ri of type
(3, 2, 7) and genus 17 (the duals of the chiral pair of maps C17.1 in Conder’s
catalogue [12]). The quotient groups ∆/Ni give two realisations of the Hur-
witz group G as Aut(Ri), each having a normal subgroup T = K/Ni

∼= C3
2

with quotient ∆/K ∼= GL3(2). The minimal common cover of R1 and R2

is a Hurwitz dessin of genus 129 with automorphism group ∆/K ′K2, an
extension of C6

2 by GL3(2).

∆

K

N1 N2

K ′K2

1

Figure 13: The subgroups Ni of ∆

The six dessins in Figure 10 correspond to six conjugacy classes of sub-
groups of index 14 in ∆, as follows. The two trees in Figure 2 correspond
to two conjugacy classes of subgroups Hi

∼= S4 in GL3(2) for i = 1, 2, the
stabilisers of points and lines in the Fano plane. These lift to two conjugacy
classes of subgroups Mi of index 8 in ∆. These are Fuchsian groups whose
signatures (0; 2, 2, 2, 3) can be deduced from Singerman’s Theorem [33]: they
have genus 0, since this is the genus of the trees, and their elliptic periods
correspond to the three fixed points of the generator y of order 2 (the three
white vertices of valency 1), and the unique fixed point of the generator x
of order 3 (the black vertex of valency 1). These groups Mi therefore have
presentations

〈X1,X2,X3,X4 | X2
1 = X2

2 = X2
3 = X3

4 = X1X2X3X4 = 1〉,
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from which it is clear that they each have three subgroups Mij of index 2,
the normal closures in Mi of {Xj ,X4} for j = 1, 2, 3 (see Figure 14).

For each i = 1, 2, one of the three subgroups Mij contains K, which is
therefore its core: this is the lift to ∆ of the commutator subgroup H ′

i
∼= A4

of Hi, giving rise to a dessin (the third in each row) with monodromy group
GL3(2) ∼= ∆/K. The other two subgroups Mij give the first and second
dessins in each row, with monodromy groups G ∼= ∆/Ni of order 1344.

∆

K

N1 N2

K ′K2

M1

M1j (j = 1, 2, 3)

M2

M2j (j = 1, 2, 3)

1

Figure 14: The subgroups Mij of ∆ (normal and non-normal subgroups are
indicated in black and white)

7 Genus 118

Conder [9] has listed all the Hurwitz groups of order up to one million.
The next genus after 17 for which there exist Hurwitz maps is g = 118,
with the automorphism group G = PSL2(27). As shown by Macbeath (see
Theorem 2.7), there is just one Hurwitz curve associated with this group.
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Figure 15: A map of type (3, 2, 7) with the monodromy group PSL2(27). This
map is of genus g = 1.

The natural representation of G has degree 28. The corresponding quo-
tient map is shown in Figure 15. It is drawn in the plane with three crossings,
but it is easy to see that these can be removed by adding a single handle, so
its genus is 1. Alternatively, one can check that there are four faces, all of
degree 7, so the Euler characterisitc is 0.

The following permutations describe the map in Figure 15 and generate
the group PSL2(27):

x = (1, 2, 4)(5, 8, 24)(6, 21, 10)(7, 16, 15)(9, 25, 28)(11, 13, 14)(12, 27, 23)

(17, 26, 18)(19, 20, 22),

y = (1, 13)(2, 25)(3, 27)(4, 23)(5, 16)(6, 12)(7, 26)(8, 22)(9, 11)(10, 17)

(14, 18)(15, 21)(19, 24)(20, 28),

z = (1, 11, 28, 19, 8, 20, 25)(2, 9, 14, 26, 15, 6, 23)(3, 12, 10, 18, 13, 4, 27)

(5, 7, 17, 21, 16, 24, 22).

The label of the half-edge attached to the vertex of valency 1 is 3; the
positions of the other labels can easily be derived. Recall that the labels
rotate around vertices in the counterclockwise direction.
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8 Higher genus examples

8.1 Calculating the genus

More generally, when the group G = PSL2(q) is a Hurwitz group (as in
Theorem 2.7), the genus of the corresponding Hurwitz dessin (or dessins) R
is

g =
|G|
84

+ 1 =
q(q2 − 1)

168
+ 1

for q 6= 8, and g = 7 for q = 8. Asymptotically, we thus have

g ∼ q3

168
as q → ∞.

However, the natural representation of G provides a quotient dessin D of
much lower genus, which we will now calculate.

For any prime power q > 11 the least index of any proper subgroup of
PSL2(q) is q+1, attained only by the conjugacy class of point-stabilisers H in
the natural representation on P1(q). A non-identity Möbius transformation
(over any field) has at most two fixed points, so it follows that in this rep-
resentation of G, any elements of orders 3 and 7 must have cycle-structures
3a1q+1−3a and 7c1q+1−7c where a = ⌊(q+1)/3⌋ and c = ⌊(q+1)/7⌋. In addi-
tion, the simplicity of G implies that any element of order 2 must induce an
even permutation, so it has cycle-structure 2b1q+1−2b where b = 2⌊(q+1)/4⌋.

If G is a Hurwitz group, and we set aside the cases q = 7, 8 and 27 when
q is a power of 7, 2 or 3, we find that the numbers of black vertices, non-free
edges and faces of the associated quotient map D = R/H are therefore

V =
q + 3 + 2α

3
, E =

q − β

2
and F =

q + 7 + 6γ

7
,

where
q ≡ αmod 3, q ≡ βmod 4 and q ≡ γmod7

with α, β, γ = ±1. Thus the Euler characteristic of D is

V − E + F = 2− 1

42
(q − 28α − 21β − 36γ)

and its genus is

g =
1

84
(q − 28α − 21β − 36γ) ∼ q

84
.

(We have already seen that g = 0 when q = 7 or 8, and that g = 1 when
q = 27.)
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In naive terms, whereas the information carried by the Hurwitz dessin R
increases cubically with q, that in D increases only linearly, even though it
is sufficient to determine R uniquely.

It also follows from Theorem 2.7 and the above calculation that the only
cases giving planar maps D are q = 7, 8, 13, 29 and 43. Of the remaining
values q ≤ 100, we obtain torus maps for q = 27, 41, 71 and 97, while for
q = 83 the genus is 2.

(A similar calculation with the Riemann–Hurwitz formula, now not re-
stricted to the groups PSL2(q), shows that any dessin of type (3, 2, 7) and
degree n has genus

n− 28u− 21v − 36w

84
+ 1,

where u, v and w are the numbers of fixed points of x, y and z, that is, the
numbers of black vertices, white vertices and faces which have degree 1.)

8.2 Failure of monotonicity

Intuition might lead one to suppose that, among all faithful quotients of
a given regular dessin, the genus should be a non-decreasing function of
the degree. Indeed this follows from the Riemann–Hurwitz formula if one
compares two quotients, one of which covers the other. However, there are
counterexamples in which the two quotients are not comparable in this way.

For instance, let R be a Hurwitz dessin with automorphism group G =
PSL2(q) for some prime power q = pe coprime to 2, 3 and 7 (equivalently
q 6= 7, 8 or 27, see Theorem 2.7). If we factor out a Sylow p-subgroup H of
G, then since |H| = q the resulting faithful quotient D = R/H has degree
n = |G : H| = (q2−1)/2. By the choice of q, none of the canonical generators
x, y or z of G has fixed points in the action on the cosets of H, so D has
genus

g =
n

84
+ 1 =

q2 + 167

168
.

However, if instead we factor out a dihedral subgroup H ′ ≤ G of order
q − 1 (there is a single conjugacy class of these maximal subgroups in G),
then the quotient dessin D′ has degree n′ = q(q + 1)/2 > n. The generators
x and z of orders 3 and 7 each lie in at most one conjugate of H ′ (namely
the normaliser of their centraliser in G if q ≡ 1 mod 3 or mod 7), so they
each have at most one fixed point in the action of G on the cosets of H ′.
A simple double counting argument (also applicable to x and z) deals with
y: since H ′ = NG(H

′) there are |G : H ′| = q(q + 1)/2 conjugates of H ′ in
G, each containing (q ± 1)/2 involutions as q ≡ ±1 mod 4; there is a single
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conjugacy class of |G|/(q ∓ 1) = q(q ± 1)/2 involutions in G, so the number
of conjugates of H ′ containing any one of them is

q(q + 1)/2 · (q ± 1)/2

q(q ± 1)/2
=

q + 1

2
,

and hence this is the number of fixed points of y. It then follows that D′ has
genus

g′ ≤ q(q + 1)/2 − 21(q + 1)/2

84
+ 1 =

q2 − 20q + 147

168
< g.

For example, if q = 13, so that n = 84 and n′ = 91, then g = 2 whereas
g′ = 0.

(The inequality g′ < g fails in the three excluded cases: if q = 7 then
g = g′ = 0; if q = 8, taking H ′ ∼= C7, we have g = 0 and g′ = 1; if q = 27
then g = 1 and g′ = 2.)

9 A15 – the first alternating group to arise as a

Hurwitz group

Although we have concentrated here on Hurwitz groups of the form PSL2(q),
there are many other examples of Hurwitz groups (see [10, 11] for detailed
surveys). The smallest alternating group which is a Hurwitz group is A15.
Figure 16 gives its (3, 2, 7)-presentations, using the natural representation:
as for all alternating groups An with n > 6, this is the unique non-trivial
representation of least degree, and by the simplicity of An it is faithful.
There are three maps representing A15. The genus of the corresponding
regular Hurwitz map is

g =
|A15|
84

+ 1 =
15!

2 · 84 + 1 = 7783 776 001.

More generally, Conder [7] has shown that all the alternating groups An

for n ≥ 168 are Hurwitz groups, while for n ≤ 167 there are exactly 64
exceptions.

An elementary case-by-case analysis, which is tedious both to perform
and to describe, shows that there are just twelve (3, 2, 7)-maps with two
faces of degree 7. These are the three with monodromy group G = PSL2(13)
in Figure 9, the six in Figure 10 (the two on the right with G = PSL3(2),
the other four with |G| = 1344), and the three in Figure 16 with G = A15.
Similarly (and this is much easier to see) the only such maps with just one
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Figure 16: Three maps with the passport (35, 2613, 7211) and with the monodromy
group A15.

face of degree 7 are the two trees in Figure 2 with G = PSL3(2), and one map
each in Figures 4 and 7 with G = PSL2(7) and PSL2(8). As a by-product
of this analysis we have also proved that any group which has a faithful
quotient of degree n = 16, 17, ..., 20, including An, is not a Hurwitz group:
one needs n ≥ 21 in order to have three faces of degree 7.

10 Genus 17 revisited

In Section 6 we considered the Hurwitz group G of genus 17 and order 1344,
an extension of a normal subgroup T ∼= (C2)

3 by GL3(2). We proved that
this extension does not split, so that G is not isomorphic to the obvious
group with this normal structure, namely AGL3(2). Since the main aim of
this paper is to discuss useful methods, rather than results, we outline here
an alternative way of seeing this, which may be applicable in other situations.

We use the standard result [3, Theorem 3.12] that the equivalence classes
of extensions of an abelian normal subgroup A by a group Q, with a given
action of Q by conjugation on A, correspond to the elements of the second
cohomology group H2(Q,A), with the semi-direct product corresponding to
the zero element. In our case Q = GL3(2) = SL3(2) and the normal sub-
group A = T can be regarded as its natural module (F2)

3. Now Bell [1] has
computed the cohomology of the groups SLn(q) on their natural modules,
and in this case |H2(Q,A)| = 2, proving the existence of a non-split exten-
sion. We also have Q ∼= PSL2(7), and the presentation of this group in [14,
§7.5] shows that T is the normal closure in G of the element t := (yz3)4,
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with a basis consisting of the commuting involutions t, tx and tx
2

. We have
given specific permutations in S14 for x, y and z, so in principle one can com-
pute the cocycle corresponding to this extension, and check that it is not a
coboundary, proving that our extension G does not split.
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[24] A.Hurwitz, Über algebraische Gebilde mit Eindeutigen Transformatio-

nen in sich, Math. Ann. 41 (1893), 403–442.
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