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Abstract. The study of the topological classification of complex poly-
nomials began in the XIX-th century by Luroth (1871), Clebsch (1873)
and Hurwitz (1891). However, very few things are known today about
the problem. A vast computer experiment allowed us to achieve a clas-
sification of all the polynomials up to degree 11 (until 1996, such a clas-
sification was known up to degree 6). These new data change entirely
the global view of the problem and permit to formulate some plausible
conjectures that may eventually lead to a solution of the problem.

1 Introduction

1.1 Statement of the Problem

Let P, : C = C and P, : C = C be two polynomials of degree n, where C ~ S? is
the Riemann complex sphere. We say that P; and P> are topologically equivalent
if there exist two orientation preserving homeomorphisms h; : S? — S% and
ho : 82 — S2 such that the following diagram

52 b ; S2
P P,

sy 5
is commutative. (We would like to attract the reader’s attention to the possibility
of performing a homeomorphism hs on the lower level. Many authors consider
a triangular diagram, in which only h; is present, while hy is replaced by the
identity, and also call the corresponding problem the problem of a “topological
classification”. These two problems are very different.)

The study of polynomials and, more generally, branched covers of S?, up to
topological equivalence began in the XIX-th century by Luroth [19], Clebsch [4]
and Hurwitz [14]. In the XX-th century the problem reappeared after a series
of short notes [6], [25], [1] and [27]. In Sect. 1.4 we also mention several subse-
quent publications, but our list is certainly incomplete. We just note that the
fundamental theorem of S. Zdravkovska [27] lays a foundation for our study.



1.2 Basic Notions

A critical value of a polynomial P, or a branch point of the corresponding rami-
fied covering of S2, is a point y € C such that the equation P(x) = y has multiple
roots. (The point y = oo must also be considered as a critical value; the corre-
sponding “solution” x = oo has multiplicity n = deg P.) Finite critical values of
P are the images under P of the roots of its derivative P'. Let y1, ...,y be all
the finite critical values of a polynomial P, deg P = n, and let yy be a base-point
different from all the y;. Choosing appropriate loops starting and ending at yq
and going around the branch points, we may associate to the polynomial P a

sequence of permutations [g1,...,dk], gi € Sn. The permutations g; act on the
n points of the preimage P~1(yo). They generate the permutation group
G=<91;---;gk>§5n ) (1)

the monodromy group of the ramified covering corresponding to P.

Let X9 b n, MO = (di1, dia, - - ., dip, ), Y%L, dij = n be the cyclic structure
of the permutation g;, ¢ = 1,...,k, or, equivalently, the multiplicity partition
for the roots of the equation P(z) = y;. The permutations g; must satisfy the
following conditions:

1. The product g19gs .. .gs is a long cycle: the points in P~1(y,) may be num-
bered in such a way that

9192---gr =c:=(1,2,...,n) . (2)

The reason for that is that the loop going around all the points y; may also
be considered as a loop going around the infinity.

2. Planarity condition: the total number of cycles in the permutations g1, .. ., gk
is equal to Ele pi = (k — 1)n + 1, or, equivalently,

k p;
Y> (dij—1)=n-1. (3)

i=1 j=1

This equality follows from the Riemann—Hurwitz formula. It also means that
deg P' = n—1 (the roots of the derivative P’ have the multiplicities (d;; —1)).

Definition 1. A sequence of permutations [g1,. .., gi] satisfying the conditions
(2) and (3) is called a (rooted) cactus. A sequence of partitions [A(1), ... A(F)]
of number n satisfying the condition (3) is called a polynomial passport.

The choice of the term “cactus” is motivated by a possibility to represent
this object graphically: see [11] and [9]. The term “passport” was proposed by
Protopopov [22].

Theorem 2. (A) For an arbitrary choice of y1,...,yx € C, and for an arbitrary
cactus [g1, - - -, gk], there exists a polynomial P with the critical values y; and the
corresponding monodromy generators g;. This polynomial is unique up to an
affine change of the variable x.

(B) For any polynomial passport [NV, . .. X¥)] there exists at least one cactus
[91,---,gk] such that X9 is the cyclic structure of g;.



The part (A) is a particular case of the Riemann’s existence theorem; for
its proof see [26]. A simple though important statement (B) was proved several
times, first in [25], then in [8], [16] and [9]. Indirectly it is also proved in [11],
since the enumerative formula for cacti (6) always gives a positive number.

1.3 Braid Group Action

Let an operation o; (i = 1,...,k—1) act on a cactus [g1, . - ., gk] in the following
way:

0i(gi) = giv1, 0i(gir1) = 9;,19i9i+1, and oi(g;) =g; forj#i . (4)

This action obviously preserves the product g; ... gx. The following theorem of
S. Zdravkovska [27] is fundamental:

Theorem 3. (A) The operations o;, i = 1,...,k — 1 generate an action of the
braid group By. That is, they satisfy the relations

0;0j = 0;0; for |Z —]l Z 2, and 0i0;410; = 04100441 - (5)

(B) The classes of the topological equivalence of complex polynomials are in
one to one correspondence with the orbits of this action.

The operations o; were introduced by Hurwitz in 1891 [14]. However, he did
not notice that they generate an action of a group, and the braid group By was
introduced only 34 years later [2]. Hurwitz also proved the “if” part of the state-
ment (B). The proof of the “only if” part is based on a theorem of Kneser [18]
(1926) which states that the topological space of the homeomorphisms of S? is
path connected.

Invariants of the Action. There exist the following obvious invariants of the
braid group action:

(1) the monodromy group G = <g1, ..., grk>;

(2) the set of the conjugacy classes of the permutations g1, ..., gk;

(3) the non-ordered passport.

Note also that the case k = 2 is trivial (only from the point of view of the
braid group action; otherwise it is very interesting, see [24]): we have 02 (g1) = ¢¢
and 0% (g2) = g§, where ¢ = g1ga = (1,...,n). In what follows we study only the
case k > 3.

1.4 What Was Known Before

Here we briefly mention the results concerning the problem of the topological
classification of polynomials known before our experimental studies.

(1) Let us call a critical value simple if the corresponding partition is 2172,
The classics of the XIX-th century have shown that rational or meromorphic



functions with only simple critical values constitute a single class of the topolog-
ical equivalence. This result implies nothing at all for the polynomials, as every
polynomial has a non-simple critical value at infinity.

(2) P. Deligne [7] proved that generic polynomials, that is, polynomials with
k = n —1 simple finite critical values, constitute a single class of the topological
equivalence.!

(3) The previous result is covered by a theorem of S. Zdravkovska [27] which
states that if for every critical value there is only one critical point (that is, if all
the partitions in the passport are of the form m1™ ™, m > 2), then there exists
a single class of the topological equivalence of polynomials.

(4) S. Natanzon [21] proved that if all finite critical values except one are
simple, then the corresponding class is unique.

(5) The strongest result that covers almost all the previous ones (except (3))
belongs to A. Khovanskii and S. Zdravkovska [16]. For a polynomial passport,
let us call its defect the number D = 3, -, dij, where the sum is taken over
all non-simple critical values. Then the following holds:

Theorem 4. If D <n+1, then the corresponding class of the topological equiv-
alence of polynomials is unique.

Simple arithmetic considerations show that the maximal value of &, for which
there exist polynomial passports with D > n+1, is equal t0 kmax = [3(n —2)/4],
where the square brackets denote the integer part.

2 Experimental Study

2.1 Enumerative Formula

Suppose you have taken a polynomial passport, you have chosen a cactus having
this passport, and you have computed its orbit under the braid group action;
suppose that the orbit turned out to be of size, say, 12000. So what? This in-
formation alone does not allow you to conclude if there are other orbits corre-
sponding to the same passport or not. The following enumerative formula due to
Goulden and Jackson [11] is very helpful, as it permits us to know in advance the
total number of cacti with a given passport. If, for example, this total number
is 12000, then everything is OK: we may affirm that there is a single orbit.

For a given partition A F n, A = (dy,...,dp,) = 1P12P2 . .nPr (where Y  p; =p
and ) ip; = n), let us denote

_ (-1
N()\)_Pl!pﬂ---pn! '

Theorem 5. The number of rooted cacti having the passport [)\(1), - /\(k)] 18

equal to
k

T T NAD) (6)

i=1

! This work remained unpublished, and we have never seen it; here we quote [17].



2.2 About the Algorithm

Algorithmic aspects of computing the orbits of an action of a group constitute
a subject interesting in itself. A detailed description of our algorithm will be
presented elsewhere. Here we only give a few remarks concerning some particular
features of the algorithm.

(1) A non-rooted cactus is an equivalence class of the rooted cacti under the
conjugation by the long cycle ¢ = (1,2,...,n). The orbit we compute consists
of non-rooted cacti rather than of rooted ones. The results thus obtained are
equivalent, as the braid (o1 ...0x_1)* transforms a cactus [g1,...,gx] into the
cactus [gf, ..., g5]. Taking non-rooted cacti as representatives permits us to “al-
most” divide the orbit size by n. More exactly, the automorphism group of a
non-rooted cactus is a cyclic group generated by ¢™ for some m; we say that it
has a symmetry of order n/m. If this group is {id} (asymmetric case), to each
non-rooted cactus there correspond n rooted ones. If it is non-trivial (symmet-
ric case), to a non-rooted cactus there correspond m rooted ones. But anyway,
symmetric and asymmetric cacti lie in different orbits, because the monodromy
group of a symmetric cactus possesses a non-trivial centralizer, while for the
asymmetric one it does not.

(2) The operations ¢; permute partitions A) and A+ in the passport.
Therefore, we must put into the same orbit all the cacti corresponding to all the
ordered passports that may be obtained from the given passport by permuting
its partitions. This makes the orbit much bigger than we would like it to be.

If we “forget” the overcrossings and undercrossings of the braid strings, or,
algebraically, if we add the relations o? = id to that of (5), we obtain a group
homomorphism that projects the braid group By onto the symmetric group
Sk- The pure braid group is the subgroup P, < By which is the preimage, un-
der this homomorphism, of the trivial subgroup {id} of Si. Now, let u + &,
u = (m,...,m;) be a partition of k. Let us call the Young braid group, and
denote by Y),, the subgroup of Bj, which is the preimage, under the same homo-
morphism, of the Young subgroup S, = Sm, X ... X Sy, < Sk. The group Y,
is the biggest subgroup of By that preserves the ordered passport in which the
first m; partitions are equal; the next my ones are equal (but different from the
first m; ones), etc. The orbits we compute are in fact the orbits of the action of
the Young braid group Y),, and not that of B.

The pure braid group Py is no good for this purpose, as it may create an
artificial splitting of orbits. For example, for the passport [2°,2 x 2219] there
are 4 orbits of the Young braid group Y, o) (and also 4 orbits of Bz, which are
3 times bigger), but 5 orbits of the group P;. Needless to say that there are 4
classes of the topological equivalence of polynomials.

We will not explain here how to construct the generators of the group Y,,
but only remark that the replacing of P by Y, also leads to an acceleration of
the algorithm.

(3) Finally, we would like to mention that we represent an orbit in a computer
memory using a classical data structure of a well balanced tree, which permits
us to construct an orbit of size N in O(N log N) time.



2.3 Results of Computations

For the degrees n < 11 there are 644 passports not covered by the general
theorems of Sect. 1.4 and which therefore need a computer treatment. Among
them there are 34 cases of non-unicity. They are summerized in Table 1. More
details (concerning, for example, the orbit representatives or the monodromy
groups) may be found in [9] (for the degrees n < 9) and in [3] (for the degree
n = 10). Note that for the degree n = 11 the orbit is always unique for any
passport, a result that is easy to state but which demanded long computational
efforts.

Degree 12. The number of passports that need to be processed for the degree
12 is 833, which is bigger than for all the previous degrees taken together. The
biggest putative orbit that needs to be computed corresponds to the passport
m = [4 x 22183 x 21119 and is of size 102036672. This exceeds 50 times the
memory of the biggest computer available to us. Furthermore, the estimated
computation time of this orbit is about 2 years. It is clear that we need radically
new ideas in order to treat completely the case n = 12. However, we do have
partial results for the degrees 12 and bigger.

3 Invariants

3.1 Theorems of Ritt and Miiller

We have already noted in Sect. 1.3 that the monodromy group is an invariant of
the braid group action. The following classical result is due to Ritt [23] (1922).

Theorem 6. The monodromy group of a polynomial covering is imprimitive if
and only if the polynomial is a composition of non-linear polynomials of smaller
degrees.

A polynomial of a prime degree obviously cannot be a composition.

This theorem suggests considering separately primitive and imprimitive cas-
es. The following remarkable result due to Miiller? [20] is one of the consequences
of the classification of finite groups.

Theorem 7. Let P be a polynomial of degree n with k > 3 critical values and
with primitive monodromy group not equal to A, or S,,. Then k = 3, and there
are only three cases possible:

1. n="Tm=[3x2%13] =[3 x 24], G = PSL3(2) = PSLy(7);
2. n=13: 7 =[3 x 2415 = [3 x 24], G = PSL;(3);
3. n=15:7=[261%32 x 2'17] = [2B,2 x 24], G = PSL4(2) = 4s.

Here 24 and 2B is the notation of conjugacy classes used in the Atlas of Finite
Groups [5]. In the next section we consider these three exceptional passports.

? We learned this result from Adrianov, who found it independently of Miiller (private
communication, February 1996)



Table 1. The list of polynomial passports up to degree 11 with a non unique orbit

n |k Passport # of orbits| Orbit sizes Reason of non-unicity
1 6 | 3 [2 x 271%,217] 2 12, 3 Symmetry
2 713 [3 x 2%17] 4 21,21,7,7| Exceptional passport
3] 8 | 3| [3%1%,271%,21°] 2 28, 4 Symmetry
4 8 | 3 [24,221%,219] 2 4,2 Symmetry
5 8 |3 [41%)2 x 221%] 2 48, 4 Symmetry
6/ 8 | 3 [231%,2 x 221%] 2 96, 8 Symmetry
71 8 | 4 [3 x 2214, 219] 2 992, 16 Symmetry
8 9|3 [2 x 2°1%,31%] 2 99, 3 Symmetry
9 9 | 3 | [421%,2%13,217] 2 117, 3 Composition
100 9 | 3| [21,2%13,217] 2 27,3 Composition
11/ 9 | 3 | [2x2%13,2%17] 2 297, 3 Composition
12| 9 | 4 |[2x2%1%,2x 217 2 891, 9 Composition
13[ 10 | 3 | [4%27,271%,21%] 2 50, 5 Symmetry
14| 10 | 3 | [32%2%,2%1%,219] 2 50, 5 Symmetry
1510 | 3 | [2x3%1%,21%] 2 60, 5 Symmetry
16/ 10 | 3 | [3%1%,2%1%,21°) 2 60, 5 Symmetry
1710 | 3 [2 x 2412, 218] 2 60, 5 Symmetry
18/ 10 | 3 | [3%1%,41°%,2%19] 2 85, 5 Symmetry
19/ 10 | 3 | [2"12,41°,2219) 2 85,5 Symmetry
20010 | 3 [61%,2 x 221%] 2 120, 5 Symmetry
21|10 | 3 | [3%1%,231%,2219) 2 430, 15 Symmetry
22/ 10 | 3 | [2%12,231%,2219) 2 430, 15 Symmetry
23| 10 | 3 | [42%1%,2 x 2719 2 730, 10 Symmetry
24/ 10 | 3 | [3%21%,2 x 2219 2 730, 10 Symmetry
2510 | 4 |[3%1%,2 x 2%1%,219] 2 3050, 25 Symmetry
26| 10 | 4 |[2*12,2 x 2%1%,218] 2 3050, 25 Symmetry
27/ 10 | 4 | [41°,3 x 2219) 2 4275, 25 Symmetry
2810 | 4 | [2%1%,3 x 2219 2 21400, 75 Symmetry
29/ 10 | 5 | [4x2%15,219) 2 150000, 125 Symmetry
30/ 10 | 3 [25,317,2%1%] 2 5, 2 Composition
3110 | 3 [2°%,321°, 218 2 10, 2 Composition
32( 10 | 3 | [423,2%15 218 2 25, 10 Composition
33| 10 | 4 | [25,2%1%,2 x 218 2 50, 20 Composition
34/ 10 | 3 [2°,2 x 221] 4 10, 10, 5, 2 |Composition and symmetry




3.2 Exceptional Passports

Degree 7. Passport: 7 = [3 x 221%]. The total number of the cacti is 56. There
are four orbits:

— two orbits of size 21 with monodromy group Az;
— and two orbits of size 7 with the monodromy group PSL3(2).

Degree 13. Passport: 7 = [3 x 2%15]. The total number of cacti is 35672. There
are five orbits:

— one orbit of size 35620 with the monodromy group A;s;
— and four orbits of size 13 with the monodromy group PSL3(3).

Remark 8. Tt is very easy to find a representative of the Ajs-orbit: practically
any randomly chosen cactus will do. In order to compute the corresponding orbit
of size 35620, one needs already a sufficiently powerful program: the first version
of our program which did not use the well balanced trees was unable to do that.
The most difficult part is however to find the representatives of the remaining
four small orbits. This information may be found in [3].

Degree 15. Passport: m = [2613,2 x 217]. The total number of cacti is 126000.
There are four orbits:

— one orbit of size 125945 with the monodromy group A;s;

— two orbits of size 5 with the monodromy group PSL4(2);

— and one “imprimitive” (or composition) orbit of size 45, with the monodromy
group (S31Ss5) N Ass.

Groups Containing a Long Cycle. One may ask why there exist several
orbits having the same monodromy group? The answer was found by G. Jones
(1998). In fact, the monodromy group G = <gi,...,gr > is an invariant not
only as an abstract group, but also as a particular permutation group, that is,
as a particular subgroup of S,,. The same group G may have several conjugate
copies inside S,,. But we must not forget either that we have fixed the product
g1---9r = (1,2,...,n) € G once and for all.

Proposition 9. There are two conjugate copies of the group PSL3(2) inside
Sy that contain the permutation (1,2,...,7) in their intersection; four copies of
PSL3(3) inside Si3 that contain (1,2,...,13); and two copies of PSL4(2) inside
Si5 that contain (1,2,...,15).

The details of this construction will be explained elsewhere.

Remark 10. The reason why for the passport [3 x 2213] there are two A7-orbits
remains mysterious. Up to now, this is the only case when we cannot propose a
clear combinatorial invariant that would explain such a splitting. Just mention
that the orbits themselves are not isomorphic: there is no bijection between them
that would commute with the braid group action.



3.3 Splitting Types in A,

As we have mentioned in Sect. 1.3, the set of the conjugacy classes of the per-
mutations g; is invariant under the braid group action. The conjugacy classes
in S, are completely determined by the cyclic structure of their elements. For
the group A,, this is not the case. The following lemma may be found in [15]
(Lemma 1.2.10):

Lemma 11. A set of permutations of a given cyclic structure splits into two
conjugacy classes in A, if and only if the lengths of all cycles are odd and
different.

Note that the parity of the monodromy group is easily seen from the passport:
the monodromy group G is a subgroup of A, if and only if the sum 25’21 (dij—1)
isevenforalli=1,2,... k.

The “smallest” example that may be constructed using the idea of the above
lemma corresponds to the passport m = [97531,2 x 31?2] (n = 25). Indeed, there
are two orbits for this passport, each of size 300.

3.4 Imprimitive Case

Let us call a passport decomposable if there exist polynomials having this pass-
port which are compositions of non-linear polynomials of smaller degrees. The
property of the decomposability of a passport may be verified using only the
passport itself, without constructing the corresponding cacti. It is less obvious
to verify if, along with decomposable cacti, there also exist the indecompos-
able ones having the same passport; all the procedures we know of are rather
complicated.

The important combinatorial data is supplied by the composition type. We
don’t have enough space to discuss this notion here. Therefore we only mention
that for a polynomial P = @) o R the composition type describes how the critical
values of R are related to the critical points of Q.

In the imprimitive case the knowledge of the monodromy group is not at all
sufficient for distinguishing between the different orbits. Let us take, for example,
the passport 7 = [2¢,3217,2218] (n = 12). There are 6 orbits for this passport,
and for all of them the monodromy group is G = Sg 1 S2. Note that, contrary
to Prop. 9, this group is also unique as a particular subgroup of Si». Indeed,
the presence of the long cycle (1,2, ...,12) implies the unique choice of the two
imprimitivity blocks of size 6, namely, {1,3,5,7,9,11} and {2,4,6,8,10,12}.
The true reason of the splitting is the fact that there are 4 different composition
types, and also for one of these types there are 3 classes of polynomials R.

Another possibility is illustrated by the passport m = [2°,4 x 21%]. In spite
of the fact that this passport is decomposable, there is a single orbit here, be-
cause all the corresponding compositions are of the same type (and there are no
indecomposable cacti for this passport).

Finally we must mention that even if there is a single class of the topolog-
ical equivalence of polynomials (), and the same is valid for R, and if we take



their compositions of the same type, there may nevertheless be several classes
of polynomials P = ) o R. One such example is discussed in detail in [3].

Despite all these complications we may say that the study of the imprimitive
case is to a large extent reduced to the classification of the factors, that is, mainly
to the primitive case.

Remark 12. Symmetry is a particular case of composition, namely, when the
polynomial R(z) = z™. However, in Table 1 we distinguish these two situa-
tions and use the word “composition” only in the case of a composition more
complicated than a simple symmetry.

4 Conjectures and Perspectives

4.1 Conjectures S, and A,

The following conjectures were formulated during our discussions with A. Kho-
vanskii. Let us say that a polynomial passport is of type S, if it is indecompos-
able and odd (that is, if among g; there exists at least one odd permutation).
Theorems of Sect. 3.1 imply that for such a passport the only possible mon-
odromy group is S,. It is also easy to see that every polynomial passport with
k> (n+1)/2is of type Sy,.

Conjecture 13. For any passport of type S, there exists a single orbit of the
braid group action.

Let us say that a polynomial passport is of type A, if it is indecomposable,
even (that is, all the permutations g; are even) and different from the three
exceptional passports of Sect. 3.2. Theorems of Sect. 3.1 imply that for such a
passport the only possible monodromy group is A,,.

Conjecture 14. For a passport of type A, there are two possibilities:

1. If there is no splitting type partitions in the passport (like in Sect. 8.3), then
there exists a single orbit.

2. If there exists a splitting type in the passport, then there exist exactly two
orbits.

(Simple arithmetic considerations show that there could exist at most one
splitting type in an even polynomial passport.)

If these two conjectures turn out to be true, the problem will be entirely
reduced to the study of the imprimitive case.

4.2 Meromorphic Functions with a Single Pole

After the polynomial case, what should be the next case to study? Previously
our project (outlined in [9]) was to attack the topological classification of the
rational functions. Today we think that a more “convenient” class of functions is



the class of meromorphic functions defined on Riemann surfaces of genus g > 0
and having a single pole. Combinatorially this would mean that we preserve
condition (2) but not condition (3).

The reasons for this change of the intention are the following:

(1) Many particular features of our programs are based on the fact that the
product g1 ...gxr =c¢ = (1,...,n) € Sy is a cyclic permutation. The case of an
arbitrary permutation would necessitate a re-programming of almost everything,
while the case of a positive genus needs only very little adjustment.

(2) There are some enumerative results for the factorizations of a long cycle
in a product of permutations of given cyclic structures [12], while the similar
results for an arbitrary permutation are very scarce.

(3) An approach based on the formula of Frobenius, that uses the characters
of the symmetric group, permits in principle to compute the number of above
factorizations for an arbitrary permutation. But this method has another flaw:
it counts also “non-transitive cacti” (that is, the sequences [g1, .. ., gx] that gen-
erate non-transitive subgroups of S,,), and therefore necessitates a cumbersome
inclusion-exclusion procedure, while the presence of a long cycle automatically
guarantees the transitivity.

(4) Last but not least, the permutation groups containing a long cycle are
classified [10] while the “planar monodromy groups” are not [13].
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