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Abstract

We consider a pair of dessins d’enfants which almost always form
a Galois orbit defined over a quadratic number field. However, from
time to time this pair splits into two Galois orbits, both defined over
Q. We show that this splitting takes its origin in a solution of a Dio-
phantine equation, namely, in this particular case, of the Pell equation.
A general conclusion which follows from this example is that, beside
usual and well-known combinatorial and group-theoretic invariants of
the Galois action on dessins d’enfants, there also exist invariants of a
Diophantine nature.

The theory of dessins d’enfants studies the action of the absolute Galois
group Aut(Q|Q) on bicolored maps, with a particular interest in the search
of invariants of this action. In the vast majority of cases, such invariants
are of a combinatorial and/or of group-theoretic nature. Sweet dreams are
sometimes expressed in the dessins d’enfants community that it would be
desirable to find a complete set of such invariants, a sort of “two dessins
belong to the same Galois orbit if and only if all their invariants are equal”.
One of the goals of this paper is to show that such a system of invariants
cannot exist. Namely, there are certain cases when the dessins in question
do not present any particular combinatorial or group-theoretic properties,
and the Galois splitting is explained by some Diophantine relations between
certain numerical characteristics of the dessins in question. We call such re-
lations Diophantine invariants. Thus, the statement that a complete set of
combinatorial or group-theoretic invariants cannot exist is not entirely neg-
ative since the Diophantine equations are a remarkable subject in itself. In
this paper we present a particularly beautiful example of this phenomenon,
when the question of splitting of a combinatorial orbit of size 2 into two
Galois orbits over Q is reduced to the famous Pell equation.
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1 Pell’s equation: preliminaries

Definition 1.1 (Pell’s equation) Let D > 0 be an integer which is not a
perfect square. Then the Diophantine equation

x2 −Dy2 = 1 (1)

is called Pell’s equation.

The word Diophantine means that we look for solutions in N or in Z. The
name of the British mathematician John Pell was erroneously attributed to
this equation by Euler: Pell never worked on it.

1.1 A brief history of the Pell equation

This innocently looking and inconspicuous equation is a real mathematical
jewel. It is studied for more than two thousand years, and people still find
something new to say about it. Among the recent publications we may
mention the monograph [5] (of more than 500 pages!) by Jacobson and
Williams (2009); a problem book [2] by Barbeau (2003); and a scientific-
popular brochure [3] by Bugaenko (2010). One of the proofs of the algorith-
mic undecidability of Hilbert’s Tenth problem is based on the properties of
Pell’s equations: see a short announcement in [4] and a detailed exposition
in [6].

The first name mentioned in relation to the Pell equation is that of
Pithagoras (VIth century before n. e.). The books on the history of mathe-
matics do not say what exactly was his contribution to the subject but we
can advance a plausible conjecture: since the equation x2 − 2y2 = 0 does
not have a solution in integers then let us try the closest one: x2 − 2y2 = 1.

The next appearance of this equation is in a letter by Archimedes to
Eratosthenes (IIIrd century before n. e.) concerning the cattle of the god
Helios. The full text of the letter, as well as a relevant discussion, may be
found in [5], pages 19–24. In order to establish the number of bulls of Helios
one must write down a system of algebraic equations which is reduced to
the Pell equation with D = 410 286 423 278 424. It may well be that the
whole story is a pure legend. At that time, the positional system was not
yet invented, and without its apparatus it is close to impossible to work
with huge numbers. Therefore, it is highly improbable that Archimedes
was himself able to solve an equation with such an enormous coefficient.
But maybe he proceeded in the opposite direction: from a solution to the
equation.
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The next step was made by Indian mathematicians: Brahmagupta (VIIth

century), Bhaskara II (XIIth century), Narayana Pandit (XIVth century),
and we return to Europe with the British mathematician Brouncker (XVIIth

century).
Then comes the omnipresent platoon of Fermat, Euler, Lagrange, Abel,

Dirichlet. . . Lagrange was the first to prove that equation (1) always has
infinitely many solutions. Abel considered the case where x, y and D are
one variable polynomials; it turned out later that this problem is related to
elliptic curves. Dirichlet, while studying the ring

Z(
√
D) = {x+ y

√
D | x, y ∈ Z},

reinterpreted Lagrange’s theorem as the existence, in this ring, of infinitely
many divisors of unity. Indeed, if (x, y) is a solution of (1) then both x+y

√
D

and x − y
√
D are divisors of unity since their product is equal to one. It

is also interesting to know that all the divisors of unity can be obtained as
powers of a single one, as we will see in the next section.

Then come modern times. . . And the Pell equation is still a subject of
interest of many contemporary researches.

1.2 Solutions

It is known that the Pell equation has infinitely many solutions. All solutions
in N lie on a quarter of hyperbola {(x, y) ∈ R2

+ | x2−Dy2 = 1}; therefore, it
is possible to order them from left to right. There always exists the trivial
solution (x0, y0) = (1, 0); the next one, the solution (x1, y1), is called the
fundamental solution.

Proposition 1.2 (Solutions of Pell’s equation) Consider the matrix

A =

(
x1 Dy1
y1 x1

)
(2)

where (x1, y1) is the fundamental solution of (1). Then all the solutions
of (1) are given by the formula(

xn
yn

)
= An

(
x0
y0

)
. (3)

Proof. If (xn, yn) is a solution then the multiplication by the matrix A
gives another solution: this fact is established by a trivial verification. Why
there are no other solutions? Notice that detA = 1; therefore, the entries
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of the inverse matrix A−1 are integers. Suppose that there is a solution
which lies between the nth and (n + 1)st solutions obtained by the above
formulas. Multiplying it by A−1 we get a solution lying between (n−1)st and
nth ones. Repeating this procedure we will finally find a solution between
(x0, y0) and (x1, y1). But the existence of such a solution contradicts the
definition of the fundamental solution. 2

Pell-like equation is the equation

x2 −Dy2 = k, k 6= 1.

This equation may have either no solutions at all, or infinitely many of them.
For example, the equation x2 − 7y2 = 3 has no solutions. Indeed, taking it
modulo 7 we get the equation x2 = 3 mod 7, but 3 is not a quadratic residue
in Z7. If, however, we find at least one solution then we get infinitely many
of them by multiplying this one by the matrix (2) with the same D and with
(x1, y1) being the fundamental solution of the corresponding Pell equation
(that is, the one with k = 1). In general, algorithms to verify if a given
Pell-like equation has a solution or not are rather sophisticated: see in this
respect Section 16.3 of [5].

We see that the most important step in solving Pell’s equation is to find
the fundamental solution. A great difficulty is that even for moderate values
of D the fundamental solution may be very large. For example, for D = 991
the smallest solution after (1, 0) is

x1 = 379 516 400 906 811 930 638 014 896 080,

y1 = 12 055 735 790 331 359 447 442 538 767.

Another example: for D = 410 286 423 278 424 the fundamental solution
contains 206 545 decimal digits (this information is taken from [5]). It is
hardly possible to find the solution for the first example (with D = 991)
by a brute force search; the second example needs no commentary. Many
sophisticated and efficient algorithms are known, but an algorithm proposed
by Bhaskara II in 1150 is still in use today.

For those who are interested in concrete results we may recommend Pell’s
equation solver [10].

We are lucky: in the example that follows D = 2 and the fundamental
solution is (x1, y1) = (3, 2): indeed, 32 − 2 · 22 = 1.
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2 Dessins, Bely̆ı function, field of moduli

2.1 Combinatorial orbit

By a combinatorial orbit we mean the set of all the dessins with a given
passport (that is, with a given set of degrees of the black vertices, of the
white vertices, and of the faces).

We consider the dessins with the following passport (see Fig. 1): the
black vertex partition is α = m3, that is, there are three black vertices,
each of them of degree m; the white vertex partition is β = 5113m−5, that
is, there is one white vertex of degree 5 (the “center”), while all the other
white vertices are of degree 1; the face partition is γ = (3m − 2)112, that
is, there is an outer face of degree 3m− 2 and two faces of degree 1. (Note
that for bicolored maps the degree of a face is, by definition, the half of the
number of the edges surrounding this face.) Bicolored plane maps with all
their faces except the outer one being of degree 1 are also known under the
name of weighted trees and are thoroughly studied in [1].

m

m

m

m

m

m

Figure 1: A combinatorial obit consisting of two dessins: black vertex de-
grees are equal to m ≥ 3 (in the figure, m = 5).

There are two dessins with the above passport. They look as is shown in
Fig. 1. Both of them are symmetric with respect to the real axis; therefore
they are defined over a real field. They may constitute a single orbit defined
over a real quadratic field, or two separate orbits both defined over Q.

Combinatorially, these dessins don’t have any particular features which
would permit to distinguish them and to put them in separate Galois orbits.
From the group-theoretic point of view, there is nothing to say either, as
the following proposition shows.
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Proposition 2.1 (Monodromy groups) The monodromy groups of the
dessins of the above figure are the same. Namely, they are S3m for m even,
and A3m for m odd.

Proof. Let us first prove that the groups in question are primitive. We
will use the following Lemma:

Lemma 2.2 (Ritt’s theorem) The monodromy group of a dessin is im-
primitive if and only if the corresponding Bely̆ı function F is decomposable,
that is, F = g ◦ f where deg(f) > 1, deg(g) > 1.

A proof of this Lemma may be found in [8]; a better proof is given in
the Errata and comments file to this book.

Let F be a Bely̆ı function, and MF the corresponding dessin. Suppose
that F is decomposable, that is, F = g ◦ f . Here g must be a Bely̆ı function
while f is not necessarily Bely̆ı but its critical values must be either vertices
or face centers of the map Mg corresponding to g.

Let A be a face of Mg and deg(A) = k. Then f−1(A) is a set of faces
of MF whose degrees are multiples of k, and the sum of these degrees is
equal to k · deg(f). In our case, both dessins of Figure 1 have two faces of
degree 1. Therefore, the only possibility for a composition would be to have
deg(f) = 2 and thus f (and, hence, also F = g◦f) would be invariant under
a central symmetry of order 2. But our dessins are not centrally symmetric.
Hence, the function F cannot be a composition, and the monodromy groups
of both dessins are primitive. 2

What remains in order to prove Proposition 2.1 is to apply the classical
Jordan’s “symmetric group theorem” (see [7]): it states that a primitive
permutation group of degree n which contains a cycle of a prime order p <
n− 2 is either Sn or An. In our example, the monodromy group is of degree
n = 3m, and it contains a cycle of order 5 (the permutation corresponding
to the white vertices). Thus, for m ≥ 3 it satisfies the conditions of Jordan’s
theorem. 2

We conclude that the monodromy group is the same for both dessins,
hence it does not permit to separate them. What comes to the rescue is the
Pell equation. It permits to find a complete list of splitting combinatorial
orbits.
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2.2 Bely̆ı function and the field of moduli

The computation of the Bely̆ı function proceeds as follows. We put the
center of the outer face to x = ∞; the white vertex of degree 5, to x = 0;
and let the sum of the positions of the centers of two small faces be equal
to 1. Then the Bely̆ı function takes the following form:

f = K · (x3 + ax2 + bx+ c)m

x2 − x+ d
.

Computing f ′ we get

f ′ = K · (x3 + ax2 + bx+ c)m−1 · q(x)

(x2 − x+ d)2
,

where q(x) is a polynomial of degree 4. What remains is to make q(x)
proportional to x4, that is, to equate all the coefficients of q(x), except the
leading one, to zero. This gives us four equations for the unknowns a, b, c, d.
The factor K is then determined by the condition f(0) = 1.

As a result of the computation we find out that all the coefficients of
Bely̆ı function belong to the real quadratic field Q(

√
∆), where

∆ = 3 (2m− 1) (3m− 2). (4)

Thus, our combinatorial orbit splits into two Galois orbits when, and
only when the parameter ∆ in (4) is a perfect square.

3 When the discriminant is a perfect square

Two remarks are in order. First, the numbers 2m−1 and 3m−2 are coprime,
which can be verified by a direct application of Euclid’s algorithm. Second,
3m − 2 cannot be divisible by 3; only 2m − 1 can. We conclude that, in
order to make ∆ a perfect square, its two factors 3 (2m− 1) = 6m− 3 and
3m− 2 should both be made perfect squares. Then, writing down

6m− 3 = a2, 3m− 2 = b2, (5)

we observe that

a2 − 2b2 = 1, (6)

that is, the pair (a, b) must be a solution of the Pell equation with D = 2.
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The equalities (5) imply that the parameter m is found as

m =
a2 + 3

6
, and also m =

b2 + 2

3
.

Therefore, in order to fit into our scheme, the parameter a must be odd and
divisible by 3 while b should not be divisible by 3.

It is easy to verify that every other solution of the Pell equation satisfies
both conditions. Indeed, the main recurrence(

xn+1

yn+1

)
=

(
3 4
2 3

)(
xn
yn

)
,

(
x0
y0

)
=

(
1
0

)
,

being taken modulo 3 gives the following sequence:

(1, 0)→ (0, 2)→ (1, 0)→ (0, 2)→ . . .

The congruence
(a, b) = (0, 2) mod 3

means that a is divisible by 3 while b is not. Also, a is always odd since
a2 = 2b2 + 1.

4 Numerical data

The matrix A of Proposition 1.2 is in our case equal to

A =

(
3 4
2 3

)
hence A2 =

(
17 24
12 17

)
.

The greater eigenvalue of A is 3+2
√

2; that of A2 is (3+2
√

2)2 = 17+12
√

2.
Thus, the growth exponent for the parameter a is 17 + 12

√
2 ≈ 33.97. The

parameter m is proportional to a2, hence its growth exponent is

(3 + 2
√

2)4 = (17 + 12
√

2)2 ≈ 1153.999133 . . . (7)

First eight values of a divisible by 3 are

3, 99, 3363, 114 243, 3 880 899, 131 836 323, 4 478 554 083, 152 139 002 499.

First four values of m are

a = 3 ⇒ m = 2,
a = 99 ⇒ m = 1634,
a = 3363 ⇒ m = 1 884 962,
a = 114 243 ⇒ m = 2 175 243 842.
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The value m = 2 does not fit in our construction; or, if you prefer, for
m = 2 there exists only one tree, namely, the one the right in Fig. 1, so it is
obviously defined over Q. By the way, its monodromy group is not S6 but
PGL2(5). Therefore, the smallest degree m for which we have a quadratic
combinatorial orbit which splits into two Galois orbits over Q is m = 1634.
For a = 152 139 002 499 we have m ≈ 3.86 · 1021.

Exercise 4.1 (One more example) Consider the following passport:

(m2, 5112m−5, (2m− 3)113), m ≥ 5.

1. Draw the dessins having this passport. Make sure that there are two
of them, and that the corresponding field is real.

2. Compute the Bely̆ı function. The corresponding field is Q(
√

∆) where
∆ = 3(m− 2)(2m− 3).

3. This time both m− 2 and 2m− 3 can be divisible by 3, hence we must
consider two cases:

(A) 2m− 3 = a2, m− 2 = 3b2,

and
(B) m− 2 = a2, 2m− 3 = 3b2.

4. Show that the system of equations (A) is reduced to the Pell equation

a2 − 6b2 = 1.

Find the fundamental solution and the general formula giving all so-
lutions. Find several numerical values of (a, b) and the corresponding
values of m.

5. Show that the system of equations (B) is reduced to the Pell-like equa-
tion

c2 − 6b2 = −2

where c = 2a. Find the fundamental solution and, using the results for
equation (A), find the general formula giving all solutions. Show that
the value of the variable c for all the solutions is even. Find several
numerical values of (c, b) and the corresponding values of m.

6. Find the growth exponents for the values of m obtained from the solu-
tions of (A) and (B).
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