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Abstract 

Lando, S.K. and A.K. Zvonkin, Plane and projective meanders, Theoretical Computer Science 117 

(1993) 227-241. 

This paper considers combinatorial properties of meanders - nonself-intersecting curves on the 

euclidean and projective plane. Both theoretical and numerical results are given, and various 

connections with other domains in mathematics are indicated. 

Lando, SK. and A.K. Zvonkin, Plane and projective meanders, Theoretical Computer Science 117 

(1993) 227-241. 

Cet article considtre les propri&s combinatoires des mCandres-des courbes sans self-intersections 

sur le plan euclidien ou projectif. Des r&hats thtoriques et numtriques sont pr&entts, des liens 

divers avec les domaines diffkrents des mathbmatiques sont indiquts. 

0. Introduction 

J’errais dans un mlandre; 

J’avais trop de partis, trop compliquks, g prendre . . . 

- E. Rostand, Cyrano de Bergerac, acte 1, sdne 5. 

A highway from west to east crosses several times a river flowing from south-west 

to east. Enumerate the bridges as they are located along the highway (from west to 

east). The order of the bridges along the river determines a permutation. Following 

Arnol’d, we call the permutation (and a corresponding geometrical image) a meander. 

Correspondence to: A.K. Zvonkin, LaBRI, Universitk de Bordeaux I. 3.51 tours de la Lib&ration, 33405 
Talence Cedex. France. 
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3iiiE?s - not meander 14523 

Fig. 1. 

Obviously, not all permutations can be obtained in this way. In particular, in 

meanders even numbers must occupy even positions, odd numbers, odd positions (see 

Fig. 1). 

Numerous pictures of meanders can be found in the last paper by Henri Poincare 

“Sur un thtoreme de gtometrie” [9], where he tried to prove, by means of meanders, 

that a transformation of a ring into itself preserving the area and shifting border 

circles into opposite directions has not less than two fixed points. The theorem was 

proved by Birkhoff in 1913 by a different method, but its generalization on the 

transformation of a sphere with handles was proved by Eliashberg [3] in 1978 with 

the help of meanders. “Projective meanders” to be defined below were used by Arnol’d 

[l] as a tool for analyzing differential-geometric properties of the manifold of zeroes 

of hyperbolic polynomials. In a number of papers meanders appeared not so much as 

a tool but as an object of investigation. For instance, in [lo] “plane permutations” are 

introduced and investigated that coincide with “closed meanders” to be defined below. 

Such permutations prove to be sorted in linear time. In [7] a class of mazes is 

introduced that are in one-to-one correspondence with meanders. 

The problem of enumerating meanders proved to be especially complicated. 

In [S] for a similar problem of enumeration for the number of folding a strip of 

stamps certain recurrence formulas are introduced. They can serve as the basis 

for constructing an algorithm of computation of corresponding numbers but, un- 

fortunately, they do not yield either explicit formulas or even the information on 

the asymptotics of the number sequence in question, while the algorithm has exponen- 

tial complexity and does not allow us to compute a large number of sequence terms. 

In a paper [6] of present authors the problem of enumerating closed meanders was 

studied. We established nontrivial upper estimates for the main term of the asymp- 

totics, and we observed a relationship between the problem of meanders and the 

theory of formal languages and that of Feynman diagrams in the quantum field 

theory. Cori [Z] attracted the authors’ attention to the fact that the problem of 

enumerating closed meanders was equivalent to that of determining the complexity of 

a class of hypermaps. 

Thus, the problem of meanders seems to belong to the simply formulated but fairly 

difficult problems of combinatorial analysis related to different sections of mathemat- 

ics and is a touchstone for various methods of enumerative combinatorics. 
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Table 1 

Table of meandric numbers 

n 0 1 2 3 4 5 6 7 8 9 10 

m, 1 1 1 2 3 8 14 42 81 262 538 

n 11 12 13 14 15 16 

M” 1828 3926 13 820 30 694 110 954 252 939 

n 17 18 19 20 21 

m, 933458 2 172 830 8 152 860 19304190 73 424 650 

n [ 22 23 24 25 26 27 

m. ? 678 390 116 ? 6405031050 ? 61606881612 

12345 12543 14325 32145 

- 

34521 52341 54123 54321 

Fig. 2. 

The present paper examines arithmetical properties of meandric numbers and also 

introduces and studies projective meanders. 

1. Arithmetical properties of meandric numbers 

Definition 1.1. Denote the number of meanders passing through n bridges by m,, 
n= 1,2,3, . . . We call m, the nth meandric number. Put m. = 1. Sequence m, can be 

readily shown to increase monotonically when n>2 (see Table 1). 

Table 1 is based on computational results obtained by the present authors, Phillips 

[7], Reeds and Shepp (ibid)‘. With a slight modification the algorithm discussed in 

[6], which enumerates closed meanders, also allows one to enumerate open meanders. 

Figure 2 shows all the eight meanders of order 5. 

’ S. Plouffe [S] communicated to us two more meandric numbers: 

mz,=602 188 541928. m3 1 = 5 969 806 669 034. 

Calculations belong to V.R. Pratt. 
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Statement 1.2. The number m, is odd iff n = 2q, q =O, 1,2,3, . 

To prove this we shall need the following lemma. 

Lemma 1.3. mzn=m,(mod2), n=1,2 ,... 

Proof. On a set of meanders of order n define the involution of “reflection” when 

permutation (aI, . . . , a,) corresponds to permutation (a\, . . . , a;), a: = n + 1 - ui, 

i= 1, . . . , n. Geometrically, this is the reflection with respect to the vertical axis passing 

through the middle of segment [l,n] (when n is odd it remains to “correct” the 

directions of the curve ends) (see Figs. 3,4). 

To each symmetric meander of order 2n one can put into correspondence a 

meander of order n, namely, its left-hand half. As to nonsymmetric meanders, they are 

divided into pairs, which proves the lemma. 0 

Proof of Statement 1.2 (conclusion). This now follows from the fact that m, = 1; for all 

the remaining odd orders k the number mk is even, since the involution of reflection on 

a set of meanders of an odd order does not have fixed points. C! 

1 .l. Closed meanders 

By joining the ends of the meandric curve passing through an even number of 

bridges, we obtain a closed meander (see Fig. 5). 

Different meanders passing through 2n bridges may correspond to the same closed 

meander (see Fig. 6). 

Fig. 3. 

Fig. 4. 
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Fig. 5. 

n n 
I I - 9 u I 

Fig. 6. 

Fig. 7. 

The number of closed meanders passing through 2n bridges will be denoted by M,. 

Statement 1.4. M, = m2,,_ 1. 

Indeed, there is a natural one-to-one correspondence between meanders passing 

through 2n - 1 bridges and closed meanders passing through 2n bridges. This can be 

seen in Fig. 7. 

Thus, numbers M,= 1,2,8,42, . . are actually contained in Table 1. 

Statement 1.5 (Land0 and Zvonkin [6]). If n=pq, where p is a prime, q> 1, then 
M,=m2,_1E2(modp). 

1.2. Systems of closed meanders and their distribution according to the number of 

components 

If we omit the condition of connectedness of the curve in the definition of a closed 

meander, we will obtain the definition of a system ofmeanders. Note that systems of 

meanders are in one-to-one correspondence with the pairs of correct parenthesis 

systems: the set of arcs in the upper half plane corresponds to one parenthesis system 

and the set of arcs in the lower half plane to the other parenthesis system. Conse- 

quently, the number of meander systems of order n is equal to the square of the nth 

Catalan number. In Fig. 8 the meander system of order 7 with 3 components is shown. 
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Fig. 8. 

Table 2 

knl 2 3 4 5 6 I 

1 1 2 8 42 262 1828 13 820 

2 2 12 84 640 5236 45 164 

3 5 56 580 5894 60312 

4 14 240 3344 42 840 

5 42 990 17 472 

6 132 4004 

I 429 

In Table 2 the distribution of meander systems according to the number of 

components is given (calculations of D. Ivanov). The order of a system is denoted by n, 

and k denotes the number of components.’ 

1.3. Distribution of meandric numbers according to the position of the just bridge 

Denote by m,, k the number of meanders with n bridges for which the position of the 

first bridge is k. It is obvious from Fig. 2 that m5, 1 = 3, m5, 3 = 2, m5, 5 = 3. In Table 3 we 

give values for number m,, k for n = 1,2, . . . ,18. 

Statement 1.6. (1) mn+l,l=mn; mZk_1,1=mZk,3. 
(2) When n is odd, sequence m,, 1, m,, 3, . . . , m,, ,, is symmetric, i.e. m,,k = m,, “+ 1 _k 

when k=l,...,n-1. 

(3) When n is eoen, sequence m,, 3, m,, 5, . . ., m,, n_ 1 
. 

is symmetnc, i.e. m,k = m,, n+2 _k 

when k=3,...,n-1. 

‘Using a software based on a system of symbolic calculations, Plouffe [8] guessed the generating 

function for the sequence 2,12,56,240,990,4004, of near-diagonal terms: 

J(~)=JG&iz)~~ 

This formula was later proved by Zeilberger [8]. 
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Table 3 

k n 1 2 3 4 5 6 I 8 9 10 11 

1 1 1 1 2 3 8 14 42 81 262 538 
3 1 1 2 3 7 14 36 81 221 
5 3 3 7 11 28 57 15.5 
7 14 14 36 57 155 
9 81 81 221 

11 538 

ht._- 
1 
3 
5 
7 
9 

11 
13 
15 
17 

12 13 14 15 16 17 18 

1828 3926 13820 
538 1530 3926 
353 1003 2458 
316 902 2053 
353 1003 2053 
538 1530 2458 

3926 3926 

30 694 110954 
11510 30 694 

7214 18 575 
6059 14810 
6059 13827 
7214 14810 

11510 18575 
30 694 30 694 

252 939 933 458 
92 114 252 939 
55 880 149 183 
44 842 115009 
41908 102 555 
44 842 102 555 
55 880 115009 
92 114 149 183 

252 939 252 939 

All the above statements are proved by establishing a one-to-one correspondence 

between the meandric families under consideration. Thus, for instance, in proving 

statements (2) and (3) the reflection operation defined is made use of. 

Conjecture 1.7. For any n sequence m,, 1, m,, 3, . . . is unimodal i.e. there can be found 
a k such that 

m,,,>m,,,2 ..’ am, k<mn kt2< . . . 

2. Projective meanders 

2.1. Definition 

Consider 2n points on a circle that divide it into equal arcs. Enumerate them in 

succession by numbers 1,2, . . . , 2n. Now divide the points into n pairs so that the 

chords connecting points in each pair would not intersect. Identify the diametrically 

opposite points of the circle, thus turning the disc into a projective plane. Then the set 

of chords forms a family of closed non-intersecting curves on a projective plane. We 

shall call the set of curves a system of projective meanders of order n. If the family 

consists of a single curve, we shall call the latter a projective meander. The number of 

projective meanders of order n will be denoted by pm,. 
As is known, the number of ways of drawing n non-intersecting chords and, 

consequently, the number of systems of projective meanders of order n is equal to the 

nth Catalan number Cat,, = (l/(n + 1)) (2,“). 
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In Fig. 9 one can see all the five systems of meanders of order 3; the two upper ones 
are projective meanders. 

The number of projective meanders in the system is actually equal to the number of 
cycles in a permutation on the set of 2n elements, the permutation being defined by 
means of two involutions without fixed points: one involution is given by a system of 
chords, the other one, by central symmetry k-+k+n(mod 2n). 

In Table 4 the values of projective meandric numbers pm,, for n =O, 1, . . ,15 are 
given (computed by the present authors). 

The algorithms of polynomial complexity for computing meandric and projective 
meandric numbers are not yet known. 

Statement 2.1. Sequences pmo, pm,, pm,, . . . and pml,pm3,pm5, . . . increase 
monotonically. 

The proof is based on the fact that it is possible to make from any projective 
meander of order n one or more projective meanders of order n+2 by means of an 

(125634) (163254) 

IQ f-Jj :@ 
1 1 1 

(1634)(25) (14)(2365) (1254)(36) 

Fig. 9. 

Table 4 

n 0 1 2 3 4 5 6 7 8 9 10 

Pm” 1 1 2 2 8 12 52 86 400 710 3404 

n 11 12 13 14 15 

pm, 6316 30 888 59 204 293 192 576018 
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operation of “stretching”, to be defined below. The projective meanders of order n + 2 

thus obtained will be different. 

For convenience, we shall further draw an infinitely far straight line on a projective 

plane as a horizontal one. The operation of stretching consists in the following: 

(1) cut one of the “upper” arcs; (2) add points 2n + 1,2n + 2 and join them to the ends of 

the cut arc; (3) add two points between points n and n+ 1 and join them by an arc; 

re-enumerate the points (see Fig. 10). 

2.2. Action of group Zz, and its orbits 

Group ZZ, acts on a set of systems of closed meanders of order n and on a set of 

systems of projective meanders. Its generator is given by the cyclic shift 

k-k+ 1 (mod2n). The action preserves the number of components. Investigation of 

the orbits of the action allows us to receive some congruences for meandric numbers, 

see, for example, Statement 1.5. 

Statement 2.2. (1) Zf n = pq is a power of an odd prime then pm,, z 2 (mod 2~). 

(2) If n = 2q, then pm, 3 0 (mod 2n). 

In order to prove the above statement we shall need the following lemma. 

Lemma 2.3. Let n >2. Then the order of the orbit of group Zzn action on the set of 
projective meanders of order n does not divide n. 

Proof. If the orbit order divides n, the system of arcs over the straight line passes into 

itself under the shift k-+k + n (mod 2n). If there is at least one arc whose beginning and 

end are among the first n points, it is isolated into a separate meander together with 

the arc shifted for n (Fig. 11). If there is no such arc, the farthest outside and inside arcs 

are isolated into a separate meander (Fig. 11). 

Fig. 10. 
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i I j *, .’ 
’ i+n nj+n 

I ‘\ I 

I . .’ I 

I ., 

,“\ 
L_______. ________, 

Fig. 11 

Fig. 12. 

Proof of Statement 2.2 (conclusion). (1) Orbit orders divide 2n = 2p4. Therefore, they 

are either equal to 2 or are divisible by 2p. There exists only one orbit of order 

2 forming a projective meander (Fig. 12). 

(2) The order of any orbit divides 2n = 2q+ ’ and does not divide 2q. Therefore, it 

equals 2q+ ‘. 0 

It is well-known that systems of nonintersecting chords are in one-to-one corres- 

pondence with rooted plane trees, and their orbits under the action of .Zzn correspond 

to (nonrooted) plane trees. Some plane trees correspond to projective meanders, 

others correspond to the systems of projective meanders. But we do not dispose of 

a geometric criterion to distinguish between these two cases. 

3. Estimates of asymptotics 

3.1. Closed meanders 

We call a system of closed meanders irreducible if there ‘is no subsegment 

[a,a+l,..., b]c[1,2 ,..., 2n] such that through its points there passes an indepen- 

dent system of meanders. Denote the number of irreducible systems of closed 

meanders passing through 2n points by N,. 

Any single meander obviously forms an irreducible system so that M, < N,. The 

left-hand figure (see Fig. 13) shows an irreducible system, the right-hand figure, 

a reducible one. 

In [6] the present authors obtained the following results. 

Theorem 3.1. (1) The generating function N(x)=C,“=, N,x” for the number of irredu- 

cible systems of meanders satisjies the functional equation 

B(x)= N(xB’(x)), (1) 
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Fig. 13 

Table 5 

n 0 1 2 3 4 5 6 7 8 

N, 1 1 2 8 46 322 2546 21870 199494 

where B(x) is a generating function for square Catalan numbers: 

B(x)= f (Cat,J2x”. 
n=o 

(2) The function B(x) is expressed by the formula 

B(t2)=-& ,/-8tcos4+16t2d4 

(3) The radius of convergence of the series N(x) equals [(4-n)/7r12 = l/13.3923 . . . . 

Empirical estimation of the ratio M,, I /M, obtained by means of the Pade 

approximation yields the value 12.26 . . . 

Equation (1) allows us to construct a polynomial algorithm for computing the 

numbers N,. We give in Table 5 a few initial values: 

If B (x, U) is a generating function for the system of meanders classifying them by 

the number of irreducible components, then by the methods similar to that in [6], it is 

easy to obtain the equation 

~(x,u)=N(xu(.@~(x,u)). (2) 

3.2. Projective meanders 

We shall encode a system of projective meanders of order n or, which is 

the same, a system of n nonintersecting arcs in the upper semi-plane by a word 

of n letters in the alphabet (a, b,c,d} according to the following rule. Each point 

is either the beginning or the end of an arc. Consider points i and i+n; the 
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ith letter of the word will correspond to them. This letter is defined by the following 

rule: 

(beginning, beginning) +a 

(beginning, end) +b 

(end, beginning) +c 

(end, end) -+d 

The example is given in Fig. 14. 

It can be seen that the number of all words of length n in the alphabet {a, b, c, d} 
equals 4” while the number of systems of projective meanders of order n, i.e. the nth 

Catalan number, is asymptotically equal to (l/&) 4”n-3’2. 

It is possible to put into correspondence with each system of closed meanders of 

order n a system of projective meanders of order 2n with the same number of 

components. To achieve this, the following operations should be carried out with the 

system of closed meanders: (1) “cut off” the lower system of arcs and transfer it by 

a turn of 180” into the upper semiplane; (2) apply the reflection operation to the 

right-hand half of the system of arcs thus obtained (see Fig. 15). Therefore, we receive 

out of closed meanders of order n projective meanders of order 2n, though not all of 

them but only those whose system of arcs is divided into two halves: one “inhabits” 

the set of points [l, 2, . . . , n], the other, [n, n + 1, . . , 2n]. We have proved the following 

statement. 

Statement 3.2. pm2,, f M, 

Note that encoding of systems of closed meanders by words in the alphabet 

{a, b, c, d} adopted in [6] and encoding of systems of projective meanders adopted in 

the present paper are consistent. 

We shall further need the following lemma (see, for example, [4], i. 2.8.8). 

Lemma 3.3. Let the set A of words in the alphabet of k letters possess the property that 
any two words u, VEA, u#v “do not overlap”, i.e. none of them is a subword of another 
one and there do not exist three words a, /?, y with a nonempty p such that u = a/3, v = py. 
Letf, =Cunxn be a generating function for the words of the set A, i.e. a, is the number of 

bacbd 

Fig. 14. 
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Fig. 15 

words of length n belonging to the set A. Then the generating function F(x) for the set of 

all words in the same alphabet not containing a single subword from A equals 

F/l(x)=(l --kx+fJ_1. 

For instance, the generating function for the words in the alphabet {a, b, c, d} not 

containing a single subword ad equals (1 -4x+x2)-r. 

Theorem 3.4. For all E > 0 and all large n 

1 ( 1 
2n 

w2,6 R+E , 
0 

where R. is the least positive root offunction l-4x+(N(x*)-1), and N(x) is the 

generating function for irreducible systems of closed meanders. 

Proof. We have to estimate from below the convergence radius of the series 

I,“= o pm”x”. The radius will obviously remain unchanged if we change in an arbitrary 

way a few initial coefficients of the series. 
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For obvious geometrical reasons the set of words in the alphabet {a,b,c,dj 
describing irreducible systems of closed meanders satisfy the nonoverlapping condi- 
tion formulated in the lemma. Let A, be a set of such words of length not more than 
2m, except the empty word. Then a set of all words in the same alphabet, not 
containing a single subword from A, and with a length of more than 2m, contains all 
the words describing projective meanders (as well as many unnecessary words). Thus, 
coefficients of the corresponding generating function 

grow not slower than the numbers pmn, the convergence radius of the series F,,,(x) 
being equal to the least positive root R, of the polynomial 

1-4x +fA,(x). 

Increasing m, we increase the number of forbidden subwords and, thus, improve our 
estimate, leaving asymptotically fewer words of a large length (see Fig. 16). 

Polynomials 1-4x +&,(x) converge coefficient-wise to the series 1-4x + 
(N(x2)- 1) (x2 instead of x appears because meanders of order n are described by 
words of length 2n; unity is subtracted from N(x2) due to the fact that the empty word 
does not enter the number of forbidden ones). Since the coefficients of the series N(x) 
are positive, R, fR,, where R. is the root of function 

l-4x+(N(x2)-1). 

The theorem is proved. q 

A specific feature of the method is that the more the number of terms of the series 
N(x) that we compute, the more accurate is the estimate of the rate of growth for 
numbers pm,, . 

Our calculations give the value (l/R,)’ = 13.42 . . 

Fig. 16. 
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