
Mathematics of the USSR-Sbornik

ON SEQUENTIALLY CONTROLLED MARKOV
PROCESSES
To cite this article: A K Zvonkin 1971 Math. USSR Sb. 15 607

 

View the article online for updates and enhancements.

Related content
ON THE PAPER "MARKOV RANDOM
FIELDS AND STOCHASTICPARTIAL
DIFFERENTIAL EQUATIONS"
Ju A Rozanov

-

MARKOV RANDOM FIELDS AND
STOCHASTIC PARTIAL DIFFERENTIAL
EQUATIONS
Ju A Rozanov

-

Switched Fault Diagnosis Approach for
Industrial Processes based on Hidden
Markov Model
Lin Wang, Chunjie Yang, Youxian Sun et
al.

-

Recent citations
A probabilistic verification theorem for the
finite horizon two-player zero-sum optimal
switching game in continuous time
S. Hamadène et al

-

Controlled random sequences and Markov
chains
A A Yushkevich and R Ya Chitashvili

-

A TRANSFORMATION OF THE PHASE
SPACE OF A DIFFUSION PROCESS
THAT REMOVES THE DRIFT
A K Zvonkin

-

This content was downloaded from IP address 147.210.215.16 on 05/09/2021 at 20:12

https://doi.org/10.1070/SM1971v015n04ABEH001565
/article/10.1070/SM1979v035n01ABEH001458
/article/10.1070/SM1979v035n01ABEH001458
/article/10.1070/SM1979v035n01ABEH001458
/article/10.1070/SM1977v032n04ABEH002404
/article/10.1070/SM1977v032n04ABEH002404
/article/10.1070/SM1977v032n04ABEH002404
/article/10.1088/1742-6596/659/1/012047
/article/10.1088/1742-6596/659/1/012047
/article/10.1088/1742-6596/659/1/012047
https://doi.org/10.1017/apr.2019.19
https://doi.org/10.1017/apr.2019.19
https://doi.org/10.1017/apr.2019.19
http://iopscience.iop.org/0036-0279/37/6/R12
http://iopscience.iop.org/0036-0279/37/6/R12
http://iopscience.iop.org/0025-5734/22/1/A08
http://iopscience.iop.org/0025-5734/22/1/A08
http://iopscience.iop.org/0025-5734/22/1/A08


Mat. Sbornik Math. USSR Sbornik
Tom 86 (128) (1971), No. 4 Vol. 15 (1971), No. 4

ON SEQUENTIALLY CONTROLLED MARKOV PROCESSES
UDC 519.2

A. K. ZVONKIN

Abstract. We consider Markov processes with continuous time, where the
switching of the controls takes place at random (independent of the future) moments
of time. We derive Bellman's cost equation and the existence of (p, e) optimal
strategies, prove the measurability of cost and give an excessive characterization of
cost.

Bibliography: 9 items.

§1. Introduction

On a probability space (Ω, j , P) there is given a family of unstopped Markov

processes (!) Xd = \xd, %r Ρά

χ\ with values in a common phase space (E, S) and

depending on some parameter d € D (the elements of the set D will be called

controls). Being at the moment t = 0 in the state χ„ 6 Ε, we choose a control d~ 6 D,

and " insert" the process X . At some random moment r. independent of the future

we instantly "switch" to a control dl, and at this moment (and from the last state,

i.e. xT ) go to the process X up to the moment r_, at which time we "switch" to

the control d7, and so on. Our purpose is to maximize the value of Μ ΣΤ=η (y k\k ,

where γ is an additive functional of the process X .

The problem, in such a formulation, on the one hand is a natural generalization of

the problem of optimal stopping (see [2]); on the other hand it allows one to carry over

a series of results from [3l, [4] and [5] to the case of a process with continuous time.

In this article we derive Bellman's cost equation, prove the measurability of cost

and the existence of ip, e)-optimal strategies, and give an excessive characterization

of cost.

§2. Assumptions

l.A. Ε is semicompact and JJ is a cr-algebra of Borel sets of E.

l.B. D is a Borel subset of a complete separable metric space.

With respect to the processes X we shall assume the following:

AMS 1970 subject classifications. Primary 60G40, 62L15, 49C15, 60J25, 93E20; Secondary
60J60.

(1) We shall systematically make use of the definitions and notation of the monograph [lj.
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608 Α. Κ. ZVONKIN

2.Α. For each d 6 D, the process X is standard.

2.B. For each t > 0, the σ-algebras %^ coincide for all d (in what follows, in

place of %. t we shall write %(), and for any x € E, dy d2 € D, the measures P**1 and

Ρx on (Ω, JUp are mutually absolutely continuous.

2.C. For any f > 0 and Γ β ίΒ, the function P(/, a?, χ, Γ) = P*\xf € Π is a

5> χ cKD)-measurable ( 2) function of (x, cO, and for each d € D the function PU ̂  χ, Π

is a C-function.

We shall define a strategy to be a sequence π = (5Q, r^ § 1 ? r2, δ 2, · · ·) satisfying

the following conditions.

3-A. rk = Tj((u; dQ, • · ·, <a?̂ _ j) is a function with values in [0, <»] such that for all

t > 0

{(ω;^, . . . ,4k-!): τ* (ω; 4,, . . . , 4 - K 0 6 -Mt X a(Dk)0)

(we shall call such a function a moment independent of the future).

3.B. 8^ = 8k(- | ·) is a (regular) conditional distribution on (D, o\D)) for given

(ω; dQ, • · •, dk_]) measurable with respect to the σ-algebra %Γ χ a(Dk) in the space

QxDk. k

3.C. With probability 1, we have 0 < τl < τ~ < · · · < oo, and lim r = oo.

As a price function we get the functional

Γ(».ω) = 2( τ ' ' ί ; ( 1 )

ft=0
where 77 is a usable strategy, and γ is a numerical functional satisfying the following

conditions.

4.A. For each d, the functional y is a homogeneous perfect W-functional.

4.B. For any 0 < s < t and any Γ € σ [θ, oo] (4) w e have
{(w,d):(Ttf)?er}e^ixe(O).

Let p be a probability measure on E, and let e > 0. We call a strategy n*{p, e)-

optimal if
ρ {Λ: : Ό Λ * (χ) > sup υη (χ) — ε} --= 1,

π

where νπ{χ) = Μ^τ(π, ω) is our mean (5) (expected) price using the strategy π. Such a

definition of optimality makes sense since the function v{x) = sup ν Αχ) is SB-meas-

urable (see the Corollary to Lemma 4). We shall call v(x) a cost and shall assume, a

priori, the condition

5.A. v(x) < oo for all χ € Ε.

(2) Here cr(D) is the σ-algebra of Borel sets of D.
(3) Here Dk =D χ D x · · · χ Ζ) (A factors).
(4) Here cr[0, °o] is the σ-algebra of Borel sets on the halfline.
(5) If the process starts at the point χ and we apply the strategy π, then by the same token

there is generated in Ω some measure (the process corresponding to this measure of course will
not in general be Markov). The mathematical expectation with respect to this measure will be
denoted by M71'.
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§ 3. Auxiliary results

The results set out in this section are basically of a technical nature.

I. Consider the process X^ = {^ % (> Ρά

χ\ obtained from the process Xd^\x( 3Rf P$

in the following way:

Ω = Ω X D", E = E, lct (ώ) - *, (ω; ̂  ^ ) ^ ^(ω) ,

Μ = )1Ϊ x a(Dn) (the completion is carried out in the system of all measures i*^ χ 6 Ε),

Ρχ = Ρχχν iv is an arbitrary but fixed probability measure on {Dn, a{Dn)) ).

Obviously all the processes Kd, d € D, η > 0, are Markov.

Lemma 1. a) For any d € D and η > 0, i^e process Xd is standard.

b) T&e? classes of junctions fix) such that \imt\ofix^ > fix) *Pd-a.s. coincide

for all processes Χ"ά d € D, η > 0.

c) For each d 6 D, i^e classes of excessive functions for the processes Χ , η > 0,

Proof. Note that the transition function of the process Χ , η > 0, does not change

with the process X . Hence assertion c) follows immediately; making use of Theorem

3.13 and Lemma 3.2 of [ l], we obtain assertion a); using condition 2.B, we obtain

assertion b).

The construction of our strategies is such that it is natural to think as though

between the moments r^ and ?V+i we observe, not the process X , but the process

X, + 1, k - 0, 1, 2, · · · (then, in particular, all the moments independent of the future

become simple Markov moments). In order not to encumber the construction excessively,

we shall, as before, denote these processes by X , and omit almost all references to

Lemma 1.

II. At some essential points in our reasoning, the technique of analytic sets

((l-sets) will be used. We cite some necessary facts. An u!-set is a continuous image

(for example, a projection) of a Borel set.

a) Any (l-set is i)-measurable ([6], p. 601); there exist (l-sets which are not

Borel ([7], §38, IV).

b) Theorem on uniformization: Let G be an Cl-set in a product Χ χ Υ, Η the

projection of G on X; then there exists a a(X)-measurable function fix) such that

ix, fix)) Ε G for all χ € Η ([6], p. 603).

c) Cl-sets are invariant with respect to the Suslin operations ([7], Russian p. 37,

and Theorem 4, §33, IX), in particular with respect to the operations of countable

union and intersection (note that a set analytic together with its complement is Borel;

see [6], p. 600), and also with respect to the operation of Cartesian product ([7],

Theorem 1, §33, III).

III. Denote by <£ the class of functions fix, d) such that

(a) fix, d) > 0,

iβ) fix, d) is an (l-function, i.e., for any c \{x, d) : fix, d) > c\ is an U--set

(then 1U, d) : fix, d) > c\ = Π " = 1 ! ' χ - d) : Ax- d) > c ~ ^ i s a n S " s e t ; s e e I L c ) ) ·



610 Α. Κ. ZVONKIN

(y) For all d € D, lirn, iQfix f d) > fix, d) Pf-a.s . (then, if τ is a Markov moment,

> A*r ^ Px~a-S- f o r a 1 1 ^ a n d

L e m m a 2 . a ) // f1 € £ , /2 € £ , i f c e n f1 + f 2 e £ .
b ) If fneS. and fn Τ /, /6e« / 6 £.
c) (6) // u € £ β«<5? z;U) = s u p r f e D w(x, */), iAew y € £ {more precisely, the

function w{x, d) - v(x) belongs to the class £).

Proof, a) That conditions (a.) and (y) are satisfied for the sum is obvious. Con-

'dition \p) follows from II.c) and the relation

r

where τ runs through the set of all rational numbers. Note that f l - f2 € £ in the case

where f ^ > / 2 > the function f2 is Borel, and lim* | ο̂ 2̂ Χί' ^ ~ /2^x< ^ x~a*s"

(γ): l«n/(jc/,d)>lim/'«(Jf/, d)>f,l(x,d)

P^-a.s. for any η > 1; therefore lim; i0A
x/' ^ ^ Ax> ^ P x ' a - S

c) {β): the set C = {x :v{x) > c\ is the projection on Ε of the set \{x, d) : «(x, d) >

c\; consequently C (and with it C χ D = \{x, d) : w{x, d) > c\) is an Cl-set also; (y) is

verified in the same way as for assertion b), using Lemma l.b).

IV. We shall call the function fix, d) excessive if it is % x o{C>)-measurable and

for each d it is excessive for the process X as a function of x. The operator which

puts in correspondence to the function g(x, d) its least excessive majorant will be

denoted by Λ. The following theorem is a fundamental result in the theory of optimal

stopping (see [2]).(7)

Theorem 1. Let g(x, d) € £ and

n-+oo

where Q is the Nth power of the operator

Qng(x, d) = max {g(x, d), T%g{x, d)}.
Then the following assertions are true.

a) six, d) = Agix, d).

b) six, d) = sup Mzgixr, d), where τ is a Markov moment.

Proof. We shall reason for each d separately.

(6) Namely, this requirement on the class S? forces us to include in it not only Borel

functions but also ^-functions. If we did not make use of the technique of «5^-sets, we would

be able to prove all the results for countable sets D only.

(7) In [2] this theorem is proved with the additional assumption that the function g(%, d)

is almost Borel in %, so that in order for us to drop this assumption, we need to deal with some

insignificant technical difficulties.
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a) If fix) = Tsg{x), then according to Fatou's Lemma and property (y) we have

for gix)

\\mTtf(x) = \jmMxg(xs+t)> Mx\img(xs+t)>Mxg(xs) =--f(x). /3)

Inequality (3) remains true for the maximum of two functions and for monotone

(increasing) passage to the limit, so that

lim TVs (x);>s(x). ,,,
F T 7 K }

As was shown in the proof of Lemma III. 1 of [2],

Tm.2-nS(x)<s(x). (5)

Take a sequence of dyadic rational numbers r { \t, ζ -> °o, and put s i = r. ~ t. Using

sequence (5), Fatou's Lemma, and (4), we obtain

s (x) > Urn Mxs (xr.) = Urn MxMX(s (xt+s.) > Mx lim MX{s (xH.s.) > M x s (χ,), ( 6 )

t—>oo t—>oo ί -->οο

i.e. Τ six) < six). For six) to be excessive, we must have lim ( ,Q T(six) = six), which

follows from (4) and (6). Then the fact that six) is the least of the excessive majorants

is proved as in Lemma III. 1 of [2].

b) The proof coincides with the proof of Theorem III. 1 of [2]

V. Lemma 3. // gix, d) € £, then six, d) = Agix, d) € £.

Proof. Condition (y) is satisfied for six, d) by virtue of its excessiveness (see

[l] , Theorem 12.4 and 4.9). In order to establish that condition iβ) is satisfied for

six, d), it is sufficient, according to (2) and Lemma 2b), to show that the function

fix, d) = Τ gix, d) satisfies condition (/3).

Let Ζ be a Borel subset of a complete separable metric space, and PiZ) the set

of all probability measures on Z. We determine in PiZ) a σ-algebra of Borel sets,

namely the minimal σ-algebra with respect to which the functions /Bi^) = μiB) are

measurable for all Β 6 σ(Ζ) (see [9]). Let <£>iz) be an (ϊ-function (i.e. {ζ :φ{ζ) > c\ is

an (ϊ-set for all c), let cfriz) > 0 and let μ:Ζ -> PiZ) be a Borel function. We shall

show that fiz) = /z<£(y) μJ^dy) is an (l-function. It is sufficient to establish this fact

for the function <fiiz) = y iz), where i" is an (l-set ( 8), i.e. to show that the set Η =

\z : μ (Γ) > c\ is an (l-set for any c. But Η is the projection on Ζ of the set

{(ζ, μ 2 ) } η ( Ζ χ { μ : μ ( Γ ) > ί : } )

in the space Ζ χ PiZ), and the set \(z, μ )\ is Borel since it is the graph of a Borel

function (see [7], Russian p. 505); therefore, according to II.c), it is sufficient to

prove that |μ:μ(Γ) > c\ is an U-set in PiZ).

As is seen from the proof of Theorem IV of Supplement III in [6] (pp . 601—602),

there exists a family of compact sets Cn . . C Ζ (n, is a natural number) such
\ m &

that for a n y m e a s u r e μ, μ(1 ) > c, t h e r e c a n b e found a s e q u e n c e p , , · · · , p , · · • s u c h

t h a t /^t(Cρ . . .ρ ) > c for a l l i t s i n i t i a l s e g m e n t s p 1 ? · · · , p, ik > l ) . By t h e s a m e t o k e n

( 8 ) I n f a c t , l e t φ ( ζ ) = η ~ 1Σ%=γΧ \ φ(ζ) > k n \ ( z ) ; t h e n φ (ζ) Τ φ(ζ) a s n - = « .
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{μ:μ(Γ)>Ο = U Π {μ: V(CPr..Pk)>c},
Px...Pk-- ·*=ι

i .e. the set \μ : μ(Γ) > c\ is obtained from the Borel (by definition) set \μ:μ{€ρ ...ρ ) >

c\ by means of an u-operation; consequently it is an U--set.

The assert ion of the lemma follows from the fact that the function μ : Ε χ D -»

P(E χ D) is such that if B{CE and B 2 C D, then

is a Borel function (see condition 2.C).

§4. Fundamental results

We consider the classes EL· of strategies which can be switched not more than Ν

times (in other words, rN+l = oo with probability 1), Ν = 0, 1, 2, · · · . Let νNix) =

Theorem 2. The functions νΛχ) satisfy the following recurrence relations:

vN(x) = sup [A(vNr i(x) — so(x,d)) + so{x,d)], vo(x) = sup so(x,d), (7)
d£D d£D

where sQ(x, d) = Md

x(yd)^.

Proof. Put g {x, d) = ν (x) - six, d) and s (x, d) = Agn_j(x, d). Fix an initial

point xQ. According to the usual scheme of dynamic programming, the proof consists of

two parts: first show that if ν Αχ) is the solution of equation (7), then

V* (x0) < VN (x0) for any π 6 ILv, ( 8)

and then construct a strategy π* 6 Π ̂  such that

va*(x0)>vN{x0) — e. (9)

I. If 77 € Π v , then

A c c o r d i n g to T h e o r e m 6.12 of [ i j ,

= Ai.?oso (x0, dk) — M*oso {xXk+1, dk) — Mxoso (xot dk) + A

= M"o [sQ (xXk, dk) — s0 (Xxk+1, dk)],

and analogously

M*o (Td°)t1 = Ml [s0(xo,do) — s 0 (x X i , d0)],

Therefore

vn KXQ) ---- Μχ0 ( s 0 (x 0 , do) -f [s0(xXl, dx) — s0(xx^

• '· · + [So (*τΛ,, ̂ v) — So (^ t v , d i V -i)]}

= M?o {s0 (x0, ώ0) + Μ,π

ο {[s0 (x T l , dx) - s 0 (xXl, d^J

(xXk, dk)
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The function sQ(x, d) is Borel by virtue of conditions 2.C and 4.B, and lim^ QSO^XJ ^ =

sQ(x, d) Ρ -a.s. by virtue of the excessiveness of sQ{x, d) (see [l], §6.17 and Theorems

12.4 and 4.9)· Therefore, according to Lemmas 2 and 3, all the functions vn(x), g (x, d)

and s

n(x, d) belong to the class £ , and the inequality

holds (this inequality follows from Theorem 1.5 and property V on p. 119 of [2]);

and so on. In sum we get inequality (8).

II. We construct the strategy 77*. Let f > 0 be given; then proceed as follows.

dQ) Choose dQ so that

S ν (x0,
 do) + So (Xo, d0) > VN (x0) 2 ^ i ;

such a d0 exists since ν^{x) = supjpn^ s/V'x ' ^ + 5 n^*' ^'
τ,) Choose r. > 0 so that

V (*o> ̂ o) '
2yV + 1

such a rl exists according to Theorem l.b).

dj) Let pj be a measure on Ε corresponding to the distribution of the random

variable xT . We change the function ν _ j(x) on a set of ρ,-measure Ο so that it

becomes Borel; then the set

) > VNX i) , . . .
v Z/V - j - 1

becomes an (l-set (see Lemma 2.a)). This means we can uniformize it (see §3, II.b)),

i.e. there exists a S-measurable function d^ = d^(x) (it is even possible to make it

Borel, changing it on a set of p,-measure 0) such that

Pl | x : s iV_i (x, dx (x)) + s0 (χ, d, (x)) > vN^ (x)

τ ) Analogously to r^ we choose r/y > Γ

Λ / _ 1 such that

g o { s , ) > x ( τ ν _ v ^ ) .
τΛΓ—ι ' ' 2Λ' -i- 1

6?^) Analogously to ^., we choose dN = dN(x T ) so that

ρ Λ · (λ' : So (X, dx (x)) > Uo (x) -— j. ζ 1,

where pN is a measure on Ε corresponding to the distribution of the random variable
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The strategy constructed obviously satisfies inequality (9). The theorem is proved.

Lemma 4. // v(x) is a cost junction, then υ (χ) | v(x) as η -> <».

The proof follows from condition 5.A and (1) and from the nonnegativity of the

functional yd.

Corollary. The function v{x) is %-measurable (and, moreover, v{x) Ε £ ; see

Lemma 2.b)).

Theorem 3. The cost v(x^ is the least solution of the equation (9)

v(x) = sup[A(v(x) — so(xtd)) + s0(x,d)]. (io)

Proof. 1) The left-hand side of equation (7) converges to the function

supdeD[s(x, d) + sQ{x, d)], where

s (x, d) = lirji sn (x, d) = lim Agn (x, d).
Λ—»oo n—*oo

We must show that s(x, d) = A(lim ρ (χ, d)). The equality

\\m\gn{xtd) =A(\\mgn(x,d))
n-*oo n—nx>

(the sequence g (x, d) is nondecreasing) is proved exactly as in [2] (Remark 2 on

p. 51).
2) Let u{x) be any solution of equation (10). Then

U (X) > Sup [0 + So (X, d)\ ---= Vo (X).
dPD

If v{x) > ν fe(x), then

u (x)=sup[A (u (x)—s0 {x, d)) -|-s0 (x, <2)]>sup [Λ (vk (x) —s 0 (x, d))+so(x, d)} ==I>*+1(JC).

By the same token, it is shown by induction that u{x) > νη(χ) for all n: consequently

u{x) > v{x).

Theorem 4. v{x) is the least function such that the function g{x, d) = v(x) —sQ{x, d)

is excessive {i.e. V\g(x, d) = g(x, ίΛ).

Proof. 1) If A{v(xQ) - sQ{xQ, dQ)) > v{xQ) - sQ(x0, dQ) for some pair (xQ, d^,

then

υ (x0) - sup [Λ (υ (x0) — s0 (xut d)) -\- s0 (x0, d)]
d£D

> Λ (Ρ (x0) — s0 (x0, do)) -f sD (Λ-0, dp) > υ (xQ) — s0 (xOf d0) + s0(^0, d0) = ν(χ0).

2) If the function u{x) - s Λχ, d) is excessive, then

sup [A(u(x) — s0(x, d)) !- s0(x, d)] -= sup [u(x) — so(x,d) ••;- s0(x, d)] = u(x),

and, according to Theorem 3, «(*) > v{x).

Theorem 5. For any probability measure p on Ε and for any e > 0, there exists a

(p, e)-optimal strategy.
(9) The question of ^-measurability of a cost function and the validity of equation (10)

for random discrete variables was posed by David Blackwell L3J and solved by R. E. Strauch [4J.
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Proof. We change all the functions ν (χ), η = 0, 1, 2, · · · , and ν{χ) on a set of

p-measnze 0 so that they become Borel, and separate Ε into se t s Ε = \x;v (x) >

vix) - <r/2|. Let G = Ε and G = Ε \ Ε ,. Choose β? '= UL(X) to be a Borel
υ υ τι η η— ι υ υ

function of x such that

and proceed as is described in the second part of the proof of Theorem 2, choosing an

e/2-optimal strategy in class Π^ if we go out of the set G .

Remark. According to our formulation of the problem, in controlling the process we

have the right to use the information on all the preceding history of the process.

However, as is seen from Theorems 2 and 5, it is automatically sufficient for (p, e)-

optimal control to have the information on where we got out of (xQ) from, what process

we observe at the present moment (a^), the number of transitions (k) already made,

and also the information necessary for optimal stopping (as a rule, this is settled by

knowledge of the current state (x^); for details see [2]).

§ 5 . Example

The process X is a diffusion process on the segment Ε - [r., r_], with absorp-

tion at the boundary, and given in the interior of the segment by the equation

dxt = α (xt, d) dt -f dm ν,

where w is a standard Wiener process . The set D is finite, and the function a{x, d)

is continuous in χ for each d. Our purpose is to maximize the value of

k k

where the function fix, d) is nonnegative and continuous in x, and f(r., d) ~ 0 (by the

same token νJ^x) = M ^ / Q / U ^ , dt)dt, where ζ is the moment of exit to the boundary of

the segment [rv r 2 ] , and d( = dk for τ^ < t < ^ + 1 ) · According to Theorem 13.16 of

[l], for each d

— s"0 (x, d) + a (x, d) s, (x,d) + f(x,d) •-•= 0, s0 (r f, d) = 0
LA

(the differentiation is carried out with respect to x). Let u{x) be a solution of the

equation

-~u"(x) + max[a(x,d)u'(x) -\-f(x,d)] - 0, «(/-,) = 0. (in

Then for the function h(x, d) — u{x) - sSx, d) we have, for each d,

~ h" (x, d) H- a {x, d) h' (x, d) < 0, h (rit d) = 0,

i.e. the function (x, d) is excessive (this follows trivially from Theorems 15.9 and

13.16 in [l]); therefore, according to Theorem 4, uix) > v(x).

We shall separate [r γ r2] into sets A such that for χ € Λ
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max [α (χ, d)u' (χ) -\-f(x,d)] = α (χ, ^) u (χ) 4- f(x, 4,)
d

(each A is the union of not more than a countable number of segments). We cover all

the boundary points of all the A by intervals of common length /; the union of these

intervals will be denoted by ] ^ Let the strategy π consist of the following: at the

moment t = 0 we choose dQ so that xQ 6 A , and subsequently, having observed the

process X , we stop at the moment rk+l of the first (after r^) exit from the set

A k U // and switch to a dk + l such that %T + € A k + 1 {k = 0, 1, 2, · · · ). After

making some simple but rather tedious estimates, we can show that for any (. > 0 we

have t>n(x) > u{x) - e for sufficiently small /. By the same token we show that u(x) =

υ\χ), i.e. the solution of equation (11) is a cost function.

§6. Concluding remarks

1) The requirement that the transition function of the process X be a C-function

(see 2.C) can be discarded; this is not reflected in the results but follows nontrivially

from the proof of Lemma l.a).

2) All the results of this article can be placed without difficulty in a more general

situation:

a) all the processes X have a (common) cut-off moment ζ,- ζ{(ύ) satisfying the

condition Ρχ\ζ> θ\ = 1, χ € Ε (i.e. the process X is normal);

b) as a price function we obtain the functional

where φ is an additive, homogeneous, finite, continuous, nonnegative, perfect func-

tional, and Ρχ\φ0 = θ! = 1, χ € Ε. Here we must assume that sQ(x, d) = Mxj°£e

and in all the formulas and reasoning we must replace the term "excessive function" by the

term "(a, ^-excessive function", i.e. an excessive function for a standard OL-subprocess

(terminating) of the Markov process \x ζ, 3Κ , Ρ \, where α = e is a multiplica-

tive functional.

This work was completed under the guidance of A. N. Sirjaev, to whom the author

is grateful.
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