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1. INTRODUCTION: WHAT IS A TESSELATION

According to the Wikipedia article,

A tesselation or a tiling of the plane is a collection of plane figures
that fills the plane with no overlaps and no gap. One may also speak
of tesselations of the parts of the plane or of other surfaces.

This definition taken literally, a tesselation may be considered as a purely topo-
logical object. However, the subsequent examples given in the Wikipedia article
apparently presume not only a topological but also a geometric structure of the
subdivisions in question: tiles are considered to be regular polygons, or irregular
ones but congruent to each other, or having other rigidity properties. For surfaces
different from the plane or the sphere this approach may create some technical
difficulties since, for example, a torus obtained by gluing the opposite sides of the
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square cannot be isometrically embedded in R3. A very important aspect in the
study of tesselations is symmetry.
In this paper we will consider another type of rigidity, namely: our tesselations
will be considered not up to isometry but up to conformal equivalence. The fun-
damental difference between the two is that in many cases the conformal structure
is fully determined by the combinatorial/topological one. Also, it turns out that
symmetry is a particular case of a much vaster phenomenon which is composition
of coverings.
We consider only compact oriented two-dimensional manifolds, and only finite
tesselations, that is, decompositions of these surfaces into a finite number of simply
connected domains. Such tesselations are commonly called maps.

2. MAPS, PERMUTATIONS, AND GROUPS

Mathematicians have studied maps for almost three centuries but it seems that
the objects called hypermaps are in many respects more fundamental.

2.1 Maps and hypermaps

Convention 2.1 (Graphs) We consider only connected graphs; loops and mul-
tiple edges are allowed.

Definition 2.2 (Map) A map is a graph embedded in a compact oriented two-
dimensional manifold in such a way that:

• The edges do not intersect.

• The complement of the graph in the surface is a disjoint union of regions
homeomorphic to open disks.

These regions are called faces of the map. The genus of a map is, by definition,
the genus of the underlying surface.

Definition 2.3 (Hypermap) A hypermap is a bicolored map: its vertices are
colored in black and white in such a way that the adjacent vertices have opposite
colors.

The above definition suggests that a hypermap is a particular case of a map.
However, hypermaps were first introduced as a generalization of maps (Cori, 1975).
Indeed, every map can be transformed into a hypermap by simply inserting a
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white vertex in the middle of every edge. In this way we obtain a particular case
of hypermaps: those whose white vertices are all of degree 2.

Convention 2.4 (Terminology) Our conventions will be as follows:

• When it is not stated otherwise, we always work with hypermaps.

• If it so happens that all the white vertices of a given hypermap are of degree 2,
we erase them in order to simplify the picture and draw the hypermap as a
map—and quite often even call it a map.

• In order to be coherent with the previous definitions, a segment in a hyper-
map joining a black vertex and a white one is called not an edge but a germ

of an edge, or simply a germ, the term “edge” being reserved for maps (an
edge of a map consists of two germs).

Definition 2.5 (Degree) The degree of a hypermap is the number of its germs
of edges. The degree of a vertex is the number of germs incident with it. The
degree of a face is half the number of germs surrounding it. (The reason for this
“half” will become clear in a moment.)

Let M be a hypermap of degree m and of genus g, F be the number of its faces, B

and W the numbers of black and white vertices, respectively, and V = B + W the
total number of edges. Then the Euler characteristic of M is computed as follows:

χ(M) = 2 − 2g = B + W + F − m = V + F − m .

According to tradition, we use the adjective plane while treating maps and hyper-
maps on the sphere.

2.2 Encoding hypermaps by permutations

Hypermaps admit an encoding by triples of permutations. In constructing this
encoding we twice use the fact that the surface on which the hypermap is drawn
is oriented: first, moving along a germ of an edge in a specific direction we can
distinguish the left bank and the right one; second, the surface itself is endowed
with a positive (counterclockwise) and a negative (clockwise) orientation.
Let M be a hypermap of degree m. We label the germs from 1 to m, and place
the label of a germ near its left bank when we go from its black end to the white
one. Then we associate to M the following triple of permutations (σ, α, ϕ) on the
set of m labels:
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• A cycle of σ contains the labels of the germs incident with a black vertex,
taken in the positive direction around this vertex; thus, there are as many
cycles in σ as there are black vertices, and the degree of a vertex is equal to
the length of the corresponding cycle.

• The cycles of α correspond, in the same way, to the white vertices (the
direction of the germs is also taken to be positive).

• A cycle of ϕ contains the labels placed inside a face; the corresponding germs
are considered to be incident with this face, and their number is equal to the
face degree (cf. Definition 2.5: exactly half of the germs surrounding a face
are incident with it). The labels are taken in the positive direction when we
look at them from the inside of the face; thus, there are as many cycles in
ϕ as there are faces, and the degree of a face is equal to the length of the
corresponding cycle.

Example 2.6 For the hypermap of Fig. 1 we obtain the following permutations
(we show also the cycles of length 1 which correspond to vertices or faces of de-
gree 1):

σ = (1, 2, 3)(4, 5)(6)(7, 8, 9) ,

α = (1, 4)(2, 9, 3)(5, 6, 7)(8) ,

ϕ = (1, 5, 9)(2)(3, 8, 7, 6, 4) .

For the outer face, one may think that the corresponding cycle (3, 8, 7, 6, 4) turns
in the negative direction, but in fact we must look “from the opposite side of
the sphere”, or, in other words, “from the inside of the outer face”, and then the
direction becomes positive.

1

23

4

5
6

7

8
9

Figure 1: A labeling of the germs of edges of a hypermap
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Remark 2.7 The following very important observation is true for any hypermap
(the proof is a simple exercise1):

σαϕ = 1 .

Therefore, in order to encode a hypermap, we may take any two of these three
permutations. The representation by a triple of permutations is, however, more
symmetric.

The correspondence between hypermaps and triples of permutations works also in
the opposite direction.

Proposition 2.8 To any triple of permutations (σ, α, ϕ) such that

• the permutation group G = 〈σ, α, ϕ〉 generated by σ, α, ϕ is transitive,

• σαϕ = 1,

there corresponds a hypermap.

The condition of transitivity ensures the connectivity of the corresponding graph.

Example 2.9 (Genus 4 embedding of the icosahedron) Take the icosahe-
dron, which is usually considered as a plane map. Write down the corresponding
permutations σ and α, and then replace σ by σ′ = σ2 preserving α as it is (that
is, taking α′ = α). Naturally, ϕ′ is now computed as (σ′α′)−1. The triple of
permutations (σ′, α′, ϕ′) represents an embedding of the graph of icosahedron in
the surface of genus g = 4 in such a way that the corresponding map has 12 vertices
of degree 5, 30 edges, and 12 faces of degree 5. Contrary to the usual plane
icosahedron, this “icosahedron of genus 4” is self-dual.

Notation 2.10 (Two icosahedra) We denote the usual icosahedron—that of
genus 0—by I0, and the icosahedron of genus 4, by I4.

There are two beautiful ways to visualize I4: they are shown in Fig. 2. The left-
hand one is called Great Dodecahedron. It is easily seen that its one-dimensional
spine is a usual icosahedron. The pentagonal “faces” are also easily seen. They
are obtained in the following way: we come to a vertex along an edge, and then
take not the next edge in the cyclic order proper to I0 but the one after the next,
thus realizing the permutation σ2 instead of σ. As to vertices, one might have an

1We multiply permutations from left to right; this is the usual convention in the systems of
symbolic calculations, like Maple.
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impression that they are surrounded by ten triangles, but in fact each pentagonal
face appears twice near the same vertex.
For the right-hand figure, which is called Small Stellated Dodecahedron, the ver-
tices look like usual polyhedron vertices, but the faces are now represented by
pentagrams. This time, after coming to a vertex along an edge we must take the
next edge in the cyclic order of edges around the vertex. Also, these two figures
are dual to each other in a purely geometric sense. What is extremely difficult to
imagine in both figures is the fact that they are not embeddings but immersions

(i. e., with self-intersections, and also with certain degeneracies) of the surface of
genus 4 into R3.
The automorphism group of I0 consists of permutations commuting with σ and α;
for I4, it consists of permutations commuting with σ2 and α. Therefore, the group
is the same, namely, A5. Note, however, that, while an axis of the symmetry of
order 5 for I0 passes through two opposite vertices, the same symmetry for the I4

“passes through” two vertices and two faces (that is, these vertices and faces are
invariant under the rotation around this axis).

Figure 2: Two ways to visualize the icosahedron of genus 4. The images are borrowed from
the Wikipedia. They are created using Robert Webb’s Great Stella software, see the Stella

website: http://www.software3d.com/Stella.html

The discovery of these figures is usually attributed to Kepler (1619), though the
Small Stellated Dodecahedron can already be found on the mosaic floor, attributed
to Paolo Ucello (around 1430), of St. Mark’s Basilica in Venice, see Fig. 13 at the
end of the paper. Later on they were rediscovered by Poinsot, and then encoun-
tered by Felix Klein in his study of equations of fifth degree (see Example 5.5).
The Great Dodecahedron is commercialized as a variation of Rubik’s cube under
the name of Alexander’s Star.
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2.3 Cartographic group

A fact which rarely attracts attention is that a simple picture drawn on a piece
of paper generates, via the triple of permutations described above, a permutation
group. We call this group G = 〈σ, α, ϕ〉 the cartographic group of the corresponding
(hyper)map. Of course, more often than not (see Dixon, 1969) the group thus
obtained is either Sm or Am. But there exist also many other, more interesting
and sometimes very subtle examples.

Example 2.11 (Mathieu group M22) The hypermap shown in Fig. 3 is of de-
gree 22. If we write down the corresponding permutations σ, α, and ϕ, we find
out that the permutation group 〈σ, α, ϕ〉 generated by them is isomorphic to the
Mathieu group M22 (a sporadic simple group of order 443 520, see, for example,
Chapter 6 of Dixon and Mortimer, 1996). Note that the set of degrees of the black
vertices, of the white vertices, and of the faces is the same, corresponding to the
partition 442212 of 22. It turns out that in the group M22 there are two conjugacy
classes with the cycle structure 442212, and they are not inverse to each other,
a situation which is rather unusual; even the sizes of these classes are different.
In the Atlas of Finite Groups (Conway et al., 2005) these classes are denoted by
4A and 4B. One may verify2 (see also Hanusse and Zvonkin, 1999) that in this
particular example all the three permutations belong to the class 4B. There also
exist hypermaps with the same set of vertex-and-face degrees which generate the
same group but have other combinations of conjugacy classes.
Cartographic groups will play very important role in what follows.

Figure 3: A hypermap representing the Mathieu group M22. All the three permutations σ, α,
and ϕ belong to the conjugacy class 4B: see Conway et al. (2005) for notation

2The Maple package group is unable to compute the centralizers of either of permutations
σ, α, ϕ: it replies “too many levels of recursion”. But the following easy trick permits to overcome
this difficulty: compute first the centralizer of the involution σ2, and then compute the centralizer
of σ inside the centralizer of σ2.
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3. BELYI FUNCTIONS

3.1 Planar case

Definition 3.1 (Belyi function, planar case) Let M be a plane hypermap of
degree m. A rational function f of degree m is a Belyi function corresponding to
M if M may be embedded in the complex Riemann sphere C = C ∪ {∞} in such
a way that:

1. All black vertices of M are roots of the equation f(x) = 0, the multiplicity
of each root being equal to the degree of the corresponding vertex.

2. All white vertices of M are roots of the equation f(x) = 1, the multiplicity
of each root being equal to the degree of the corresponding vertex.

3. The hypermap itself is obtained as M = f−1([0, 1]).

4. Inside each face of M there exists a single pole of f (or, if you like, a root
of the equation f(x) = ∞), the multiplicity of the pole being equal to the
degree of the face. We call this pole the center of the face (of course, it is in
no way its “geometric center”).

5. Beside 0, 1, and ∞, there are no other critical values of f .

Remark 3.2 (Terminology) One must distinguish between critical values and
critical points. A critical point of f is a root of its derivative (with a standard
change of variables when it comes to infinity) while a critical value is the value of
f at its critical point.

Example 3.3 (Explicit computation) The following example is borrowed
from a recent paper Pakovich, Pech, and Zvonkin (2009). Let us consider the
hypermap shown in Fig. 4.

Figure 4: A hypermap
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We claim that the corresponding Belyi function is as follows:

f(x) =
50000

27
· x6 (x − 1)3 (x + 1)

(x2 + 4 x − 1)5
. (1)

Indeed, this function has a root x = 0 of multiplicity 6, a root x = 1 of multiplic-
ity 3, and a simple root x = −1 (compare with the degrees of the black vertices).
It also has two poles of degree 5 each (compare with the face degrees): they are
the roots of the polynomial x2 + 4 x− 1. Now, factoring the function f(x) − 1 we
obtain

f(x)− 1 =
1

27
· (11 x3 + x2 − 3 x + 3)2 (7 x − 1) (59 x3 − 121 x2 + 33 x − 3)

(x2 + 4 x − 1)5
. (2)

We see that this function has three double roots (they are the roots of the poly-
nomial 11 x3 + x2 − 3 x + 3) and four simple roots; compare with the degrees of
the white vertices.
These observations are not yet conclusive since there exist seven non-isomorphic
hypermaps having the same set (613111, 2314, 52) of vertex-and-face degrees (see
below, Remark 3.4). But the Maple plot shown in Fig. 5 convinces us that the
answer is correct.

–0.4

–0.2

0

0.2

0.4

–1 –0.5 0 0.5 1 1.5
Figure 5: A Maple plot of the hypermap of Fig. 4 obtained as a preimage of the segment [0, 1]

via the Belyi function (1). Black vertices are marked by little squares

This example is not a “random” one. If we send, via a linear fractional trans-
formation, the two poles of the above Belyi function f to 0 and ∞, respectively,
we get a Laurent polynomial L with rather unusual properties with respect to
the so-called moment problem (see Pakovich, Pech, and Zvonkin, 2009): it has
a huge space of Laurent polynomials orthogonal to all powers of L on the unit
circle. This phenomenon is at least partly explained by unusual behavior of the
cartographic group. While acting on 10 points, this group is isomorphic to S5.
The representation of any permutation group by permutation matrices always has
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at least two invariant subspaces: the space of dimension 1 spanned by the vector
(1, 1, . . . , 1), and the space of dimension n−1 containing all vectors (x1, x2, . . . , xn)

with
∑n

i=1
xi = 0. But in this particular example the second space splits further

into two invariant subspaces.

Remark 3.4 Above, we claimed that there exist seven non-isomorphic hypermaps
with the set of vertex-and-face degrees (613111, 2314, 52). To prove this sort of
claim is not an easy task. First, we may draw the hypermaps in question: see
Fig. 6. Then, in order to prove that their list is exhaustive, we may use Frobenius’s
formula, see Proposition 3.5.

S S
5 6

S
10

Figure 6: All the seven hypermaps with the set of vertex-and-face degrees equal to
(613111, 2314, 52). Cartographic groups are also indicated

Proposition 3.5 (Frobenius’s formula) Let C1, C2, . . . , Ck be conjugacy

classes in a finite group G. Then the number N (G; C1, C2, . . . , Ck) of k-tuples

(x1, x2, . . . , xk) of elements xi ∈ G such that each xi ∈ Ci and x1x2 . . . xk = 1, is

equal to

N (G; C1, C2, . . . , Ck) =
|C1| · |C2| · . . . · |Ck|

|G| ·
∑

χ

χ(C1)χ(C2) . . . χ(Ck)

(dimχ)k−2
,

where the sum is taken over the set of all irreducible characters of the group G.
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Applying this formula to the group G = S10, k = 3, and the conjugacy classes C1,
C2, C3 determined by the cycle structures 613111, 2214, and 52, respectively, and
computing the irreducible characters of S10 using the Maple package combinat,
we get

N (G; C1, C2, C3) = 25 401 600 = 7 · 10! .

None of the maps shown in Fig. 6 has a non-trivial orientation-preserving au-
tomorphism; therefore, each of them admits 10! different labelings, and we are
done.
But the situation is not always that simple. First, to find “by hand” all figures
one is looking for may very soon become extremely difficult, and no reasonable
algorithm, let alone software is known to do this job. Second, the presence of
symmetric figures may obscure the counting: when the formula gives “seven” as
the answer, it may as well mean “six asymmetric figures plus two symmetric ones
having the symmetry of order 2”. And, third, Frobenius’s formula also counts
k-tuples of permutations which generate non-transitive groups. Thus, the situation
may easily become inextricable.

Theorem 3.6 (Riemann’s existence theorem, planar case) For any plane

hypermap M there exists a Belyi function f : C → C such that M = f−1([0, 1]).

This function is unique up to an isomorphism, that is, up to a linear fractional

transformation, of the preimage sphere.

3.2 Greater genera

For greater genera the situation is more complicated. For the genus g = 0 there
exists only one Riemann surface, namely, the Riemann sphere C. But for every
fixed genus g ≥ 1 there exist infinitely many Riemann surfaces of genus g. All of
them are homeomorphic as topological surfaces, but they are not isomorphic as
complex analytic manifolds. This is why we need a notion of a Belyi pair.
For what follows it is also important to note that the concept of the Riemann
surface and that of the complex algebraic curve are equivalent: see, for example,
Jost (1997) or Miranda (1995).

Definition 3.7 (Belyi pair) A pair (X, f), where X is a Riemann surface, and
f : X → C is a meromorphic function, is called a Belyi pair if all critical values of
f belong to {0, 1,∞}.

Theorem 3.8 (Riemann’s existence theorem, non-planar case) For any

hypermap M of genus g ≥ 1 there exists a Belyi pair (X, f) such that M is
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embedded in X as M = f−1([0, 1]). The correspondence between black vertices

and f -preimages of 0, white vertices and f -preimages of 1, and so on, is the

same as in Definition 3.1. The pair (X, f) is unique up to an automorphism of

the surface X.

Example 3.9 (Fermat curve) Let us consider the Fermat curve

F = {(x :y :z) | xn + yn = zn} ⊂ CP2

and its projection on the first coordinate

p : F → C : (x :y :z) 7→ (x :z)

(the projection is not defined at the point (0 : 1 : 0) but this point does not
belong to the curve F). In the affine part of C (that is, for z = 1) the only
critical values of p are the nth roots of unity since only for them the equation
xn + yn = 1 ⇔ yn = 1 − xn, considered as an equation in y, has multiple roots.
It is easy to verify that ∞ = (1:0) is not a critical value either. Then, composing
the projection p with the mapping x 7→ xn we send all the above critical values
to 1, and create two new critical values, 0 and ∞. The function f thus obtained is
a Belyi function on F . The degree of f is n2 since f is obtained as a composition
of two functions of degree n each.
In this example it is interesting to take the f -preimage of the triangulation of the
sphere C consisting of three vertices positioned at 0, 1, and ∞, of three edges
[0, 1], [1,∞], and [∞, 0], and of two triangles which are the upper and the lower
half-spheres. It is clear that the preimage will have 3n2 edges and 2n2 triangular
faces (since there is no critical values inside the faces or the edges), while there
are 3n vertices of three different “colors”, namely, n preimages of 0, n preimages
of 1, and n preimages of ∞. The graph thus obtained is the complete tripartite
graph Kn,n,n and, since its embedding is a triangulation, it is also the one of the
least genus, which can be easily calculated: g = (n − 1)(n − 2)/2. The fact that
the least genus of the graph Kn,n,n is equal to (n − 1)(n − 2)/2 was first proved
in White (1969) and Ringel and Youngs (1970) in a purely combinatorial way;
without doubt, the authors of both papers were not aware of the fact that their
work was related to Fermat’s equation.
The preimage f−1([0, 1]) provides an example of a regular embedding of the com-
plete bipartite graph Kn,n. This example was a starting point for a series of
beautiful and profound results concerning other regular embeddings of complete
bipartite graphs, their classification, and the corresponding Belyi functions: see
Jones, Nedela, and Škoviera (2007, 2008) and Jones, Streit, and Wolfart (2007).
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Unfortunately, the margins of this paper are too narrow in order to present the
proof of Fermat’s Last Theorem which would be based on the above construction.

Not every Riemann surface can support a Belyi function, but the class of those
that can is maybe the most interesting one.

Theorem 3.10 (Belyi theorem) A Belyi function f : X → C exists if and only

if the Riemann surface X is defined over the field Q of algebraic numbers. In this

case the function f can also be represented over Q.

Remark 3.11 In fact, Theorems 3.6 and 3.8 are just particular cases of Rie-
mann’s existence theorem. More generally, if we fix k points y1, y2, . . . , yk ∈ C and
k permutations σ1, σ2, . . . , σk generating a transitive group on m points and such
that σ1σ2 . . . σk = 1, then there exists, and is unique up to an isomorphism, a pair
(X, f) such that X is a Riemann surface and f : X → C is a meromorphic function
of degree m having y1, y2, . . . , yk as its critical values (or, in another terminology,
its ramification points), and having σ1, σ2, . . . , σk as its monodromy permutations
(for the definition of the monodromy, see next section).

Making a linear fractional transformation of C we can put any three critical values
in any three prescribed positions—for example, in 0, 1, and ∞, thus reducing the
number of continuous parameters yi from k to k − 3. If now k = 3 then, in order
to represent the pair (X, f), we don’t need any more continuous parameters but
only a triple of permutations.

The pair (X, f) is defined over Q when all critical values of f belong to Q

(infinity is considered as being “defined over Q”). This is the so-called “obvious”
part of the Belyi theorem, though it is obvious only for specialists in algebraic ge-
ometry; see in this respect Wolfart (1997), Köck (2004), and also Sec. 2.6 of Lando
and Zvonkin (2004). The “difficult” part, which is, in fact, rather elementary, con-
sists in taking all these critical values to {0, 1,∞} by successive compositions. We
see, even at this stage, the fundamental role played by composition which is the
main subject of this paper.

Taking a Belyi pair (X, f), or just a Belyi function f when X = C, and replacing
all the algebraic numbers involved in their definition by their conjugates under
some automorphism of the field of algebraic numbers, we obtain another Belyi
pair and thus another hypermap. Therefore, the Galois group Gal(Q |Q), that is,
the group of automorphisms of the field Q, acts on hypermaps. This fact hugely
impressed Alexandre Grothendieck who wrote:
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I do not believe that a mathematical fact has ever struck me so strongly
as this one, nor had a comparable psychological impact.

(This and other remarks by Grothendieck concerning Belyi theorem, both mathe-
matical and personal, can be found in Grothendieck (1997), pages 252-253 and 280.
It is also Grothendieck who called hypermaps embedded in Riemann surfaces via
Belyi functions “dessins d’enfants”, which means “children’s drawings” in French.)

Example 3.12 (Galois orbit) In Fig. 7 we see two maps, each having six edges,
or 12 germs of edges. The cartographic group of both of them is the Mathieu
group M12 (a sporadic simple group of order 95 040; once again, for the definition
of Mathieu groups see Chapter 6 of Dixon and Mortimer, 1996). Computing
the corresponding Belyi functions (see, for example, Zvonkin, 1998) we find out
that their coefficients belong to the field Q(

√
−11) (explicit expressions are too

cumbersome to be written here in full). Taking one of the values of the square
root we get one map, taking the other one we get the other map.

Figure 7: Two maps whose cartographic group is the Mathieu group M12, and whose Belyi
functions are defined over the field Q(

√

−11)

Notice that the only irrational entries in the character table of M12 (see Conway
at al., 2005) also belong to the field Q(

√
−11): they are the values of certain

characters on the two mutually inverse conjugacy classes with the cycle structure
(11, 1). This is, by the way, the cycle structure of the faces of our maps. This
phenomenon, observed in many examples, is based on some general results on the
inverse problem of Galois theory (see, for example, Chapter 8 of Serre, 1992), but
no effective version of it is known which would be helpful in computation of Belyi
functions.

As another example we may consider the family of seven dessins shown in Fig. 6.
This family splits into three Galois orbits: the dessins with the cartographic groups
S5 and S6 are defined over Q and thus form two separate orbits, while the five
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dessins with the cartographic group S10 constitute a single orbit defined over an
extension of degree 5 of Q.
The examples given up to now show the important and sometimes very subtle role
played by the cartographic group.

One of the most interesting parts of the theory of dessins d’enfants is the search
for combinatorial invariants of the Galois action on hypermaps. Among these
invariants let us mention the following (the list is incomplete):

• the cartographic group;

• the automorphism group (which is nothing else but the centralizer of the
cartographic group in Sm);

• the set of conjugacy classes of σ, α, and ϕ, as in Example 2.11, or the set of
vertex-and-face degrees as a loose analogue of the above;

• last but not least, invariants related to the functional composition.

For the proofs, see Jones and Streit (1997). Some interesting Galois invariants
related to composition are considered in Wood (2006). In the next section we will
see that the composition itself is also related to the cartographic group.

4. COVERINGS AND RITT’S THEOREM

A meromorphic function is a ramified covering of the Riemann sphere C by a Rie-
mann surface X . Ramified coverings are usually constructed as compactifications
of unramified coverings. Below we repeat some well-known facts about unramified
coverings.

4.1 Unramified coverings and fundamental groups

Let X and Y be two path-connected topological spaces and f : X → Y a contin-
uous mapping.

Definition 4.1 (Unramified covering) The mapping f : X → Y is an unram-

ified covering of Y by X if it is locally homeomorphic and if every point y ∈ Y

has a neighborhood U such that the preimage f−1(U) ⊂ X is homeomorphic to a
product U × D where D is a discrete set. We will consider only finite coverings,
when |D| = m < ∞; then m is called the degree of f and denoted by deg f . Fixing
a base point y0 ∈ Y we may take D = f−1(y0).
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Let us take as a base point in X an arbitrary element x0 ∈ D; therefore f : x0 7→ y0.
It is clear that a loop in X attached to x0 is taken to a loop in Y attached to y0,
and that the product of loops in X is taken to a product of loops in Y . Thus, we
have a homomorphism of fundamental groups

φ : π1(X, x0) → π1(Y, y0) .

Lemma 4.2 (Lemma of covering homotopy) The homomorphism φ is injec-

tive. Therefore, to any unramified covering f : X → Y there corresponds a sub-

group of π1(Y, y0) which is the image of π1(X, x0) under φ and which is isomorphic

to π1(X, x0).

A proof of the lemma can be found in virtually every topology textbook.

Construction 4.3 (Monodromy) Denote for simplicity π1(X, x0) = P and
π1(Y, y0) = Q. In a slightly loose way, we may consider P to be a subgroup of Q;
the inclusion of groups is denoted as P ≤ Q. A loop γ ∈ Q starts at y0 and finishes
also at y0. Therefore, its preimage f−1(γ) starts at xi ∈ D and finishes at xj ∈ D.
Thus, the group Q acts on D; this action is transitive since X is path-connected.
It is clear that P is the stabiliser of x0 ∈ D. The permutation group G created by
the above action is called the monodromy group of the covering. Since |D| = m

we may consider G as a subgroup of Sm; this subgroup is the image of Q under
the group homomorphism Q → Sm. It is also clear that the set D is in a bijection
with the right cosets of P in Q (hence m is the index of P in Q), and that the
action itself is equivalent to the action of Q on the right cosets of P by right
multiplication.

Now, in the opposite direction, to any subgroup P ≤ Q = π1(Y, y0) of a finite
index m there corresponds a covering of Y of degree m. It is constructed as
follows. Take the set X of pairs (y, γ) where y ∈ Y and γ is an oriented path
from y0 to y. Then X is obtained as a quotient of X by the following equivalence
relation: two pairs (y1, γ1) and (y2, γ2) are equivalent if y1 = y2 and γ1γ

−1

2
∈ P .

The covering function f associates to a pair x = (y, γ) its end-point y. We leave it
to the reader to verify that all the conditions of the monodromy construction are
satisfied.

We conclude that there is a correspondence between the coverings of Y and the
subgroups (in fact, conjugacy classes of subgroups—see below) of its fundamental
group, which works in both directions.
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“Up to. . . ” What if we change certain elements of our construction?

1. Replacing the base point y0 ∈ Y with another point y1 ∈ Y we obtain a
group π1(Y, y1) which is isomorphic to π1(Y, y0). This isomorphism is not

canonical; however, two such isomorphisms are obtained from one another
by an inner automorphism of one of the groups. In other words, one may
say that a free loop which is not attached to a specific base point represents
not an element of the fundamental group but an entire conjugacy class.

2. Replacing the point x0 ∈ D = f−1(y0) with another point x1 ∈ D we get a
subgroup P ′ ≤ π1(Y, y0) conjugate to P . (This is a general algebraic fact:
the stabilizers of two points in a transitive action are conjugate.)

3. Two coverings f1 : X1 → Y and f2 : X2 → Y are called isomorphic if there
exists a homeomorphism u : X1 → X2 such that the following diagram

-
@

@
@R

�
�

�	

X1 X2

Y

u

f1 f2

is commutative. Then two coverings are isomorphic if and only if the corre-
sponding subgroups P1, P2 ≤ π1(Y, y0) are conjugate.

Relation to dessins d’enfants. Let us take as Y the Riemann sphere punc-
tured at k points: Y = C \ {y1, . . . , yk}. Then Construction 4.3 gives us, as
a covering space X , a Riemann surface punctured at the set f−1({y1, . . . , yk}).
Take the natural generators γ1, . . . , γk of π1(Y, y0), namely, the loops from y0

going around the punctures y1, . . . , yk. Then their images under the group homo-
morphism π1(Y, y0) → Sm are k permutations σ1, . . . , σk ∈ Sm. Since the product
γ1 . . . γk is a loop going around all the points y1, . . . , yk and is therefore contractible
on the sphere, we get γ1 . . . γk = 1 and therefore σ1 . . . σk = 1. Since γ1, . . . , γk

generate π1(Y, y0), the permutations σ1, . . . , σk generate the monodromy group
G ≤ Sm.
In order to construct a ramified covering out of unramified one we must compactify
both X and Y . For Y = C \ {y1, . . . , yk} it is easy: we just put back the missing
points. For X it needs some standard technique of introducing the complex struc-
ture in the neighborhoods of the added points; we won’t speak about it here. The
points y1, . . . , yk ∈ C are now ramification points, or critical values of the covering.
We still denote the compactified surfaces by X and Y .
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If k = 3 and the three ramification points are chosen to be 0, 1, and ∞, then instead
of the notation σ1, σ2, σ3 we use σ, α, ϕ. These three permutations used to act on
the preimages of the segment [0, 1]; however, taking the base point y0 ∈ (0, 1) we
may consider them acting on the preimages of y0. Thus, a dessin d’enfant is a

covering of the Riemann sphere unramified outside {0, 1,∞}, and the cartographic

group is a particular case of the monodromy group.

Remark 4.4 (Origamis) Different topological spaces may have isomorphic fun-
damental groups. The fundamental group of the thrice-punctured sphere is the
free group F2 of rank 2. The fundamental group of the once-punctured torus is
the same. Thus, we obtain two entirely parallel theories: the theory of dessins
d’enfants, and the theory of coverings of the once-punctured torus. The latter one
is called theory of origamis. It is difficult to choose a particular reference since
they are numerous; as an example take Herrlich and Schmithüsen (2005). Note
that while the sphere has only one complex structure, the torus may have infinitely
many of them: the corresponding Riemann surfaces are called elliptic curves.

4.2 Ritt’s theorem

We are now ready to prove the main theorem of our paper. It characterizes the
coverings which can be decomposed in a successive application of two (or more)
coverings.

Definition 4.5 (Imprimitive permutation group) A permutation group H

acting on a set D is called imprimitive if D can be subdivided into nontrivial
disjoint blocks D1, . . . , Dn of equal size (nontrivial means 1 < |Di| < |D|) such
that the image of a block under the action of any element of H is once again a
block. In other words, H respects a nontrivial equivalence relation on D.

Theorem 4.6 (Ritt’s theorem) An unramified covering h : X → Z of degree

deg h = mn is a composition of two coverings,

h : X
f−→ Y

g−→ Z, deg f = m, deg g = n, m, n > 1 , (3)

if and only if the monodromy group H of h is imprimitive and has n blocks of

size m.

Proof. Suppose that the decomposition (3) takes place, and choose the base

points x0 ∈ X , y0 ∈ Y , z0 ∈ Z such that x0

f7→ y0

g7→ z0. Then there is an inclusion
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of fundamental groups P < Q < R where P = π1(X, x0), Q = π1(Y, y0), and
R = π1(Z, z0). The action of R on the right cosets of P is imprimitive, the blocks
being the right cosets of Q.
Now, in the opposite direction, let an action of R on the right cosets of P be
imprimitive. Recall that in the action of R on the set D = h−1(z0) the subgroup P

acts as the stabilizer of x0. Then take Q as the stabilizer of the block B containing
x0. The group P is a proper subgroup of Q since Q permutes the points inside B

while P leaves x0 fixed. (In fact, Q acts transitively on B.) Also, Q is a proper
subgroup of R since R is transitive on D while Q leaves B fixed. The existence of
this intermediate subgroup permits us to construct two coverings f : X → Y and
g : Y → Z along the lines of the second part of Construction 4.3. �

Remark 4.7 (Context) Ritt’s theorem is general and fundamental in studying
compositions. As we have seen, it is also very simple, on the level of an under-
graduate student exercise. However, it has had an unlucky history. In topology
books they usually explain the relations between coverings and subgroups of fun-
damental groups; but they take no interest in compositions. Group theorists know
pretty well that in order to obtain a primitive action of a group one must con-
sider its action on the cosets of a maximal subgroup (Corollary 1.5A of Dixon and
Mortimer, 1996). However, they are not interested in compositions either. Or, it
would be better to say that they did study compositions in the form of imprim-
itive permutation groups, some of whose aspects are highly non-trivial. But still
the function-theoretic nature of the question in this approach was not explicit.
Finally, in complex function theory they do take interest in compositions but usu-
ally prove the corresponding statement only for some particular cases. Ritt himself
first proved the theorem for polynomials (see Ritt, 1922), and ten years later used
it for rational functions. In the book Lando and Zvonkin (2004) the theorem is
proved for two-dimensional surfaces. Also, many proofs include some unnecessary
elements related to the Reidemeister–Schreier construction, the only effect being
that the proof becomes longer and more obscure. In fact, I have never seen this
theorem being stated and proved in all its generality and simplicity, though many
specialists certainly “know” the above proof.

Construction 4.8 (Checking imprimitivity) There exists a simple algorithm
that checks the imprimitivity of a group H and calculates the blocks (Atkinson,
1975; we follow Dixon and Mortimer, 1996). Take x0, x1 ∈ D and construct a
directed graph whose arcs constitute the orbit of (x0, x1) under the action of H .
(In constructing the orbit it suffices to act only by generators of H). Then forget
the orientation of the graph and calculate its connected component containing x0.
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This component is the minimal “block” which contains both x0 and x1, though the
“block” may turn out to be trivial, that is, it may coincide with the whole set D.
Repeat this procedure for all x1 6= x0. If every time you get the whole set D then
the action is primitive; otherwise, you will find a nontrivial block.
The complexity of the calculation of connected components of a graph is propor-
tional to the number of edges, and the number of edges is O(k|D|) where k is
the number of generators of H . We must repeat the search for connected compo-
nents |D| times (the number of choices of x1, while x0 remains fixed). Hence, the
complexity of the algorithm is O(k|D|2).

5. VARIOUS MANIFESTATIONS OF COMPOSITION

We return here to the world of dessins d’enfants, hypermaps, and Belyi functions
and enumerate a number of phenomena related to compositions.

5.1 Symmetry

Symmetric hypermaps are almost inevitably imprimitive, the blocks being the
orbits of the action of the symmetry group. However, if a hypermap is regular,
that is, if its symmetry group acts transitively on the set of germs of edges, then
this procedure leads to a single trivial block. In this case we can take as blocks the
orbits of a subgroup of the symmetry group. Therefore, the only exception to the
rule is when the symmetry group does not have nontrivial subgroups. This is the
case, for example, for the polynomial xp with p prime; the corresponding dessin is
the star-tree with its center at 0.
From the covering point of view, returning to the notation P = π1(X, x0) and
R = π1(Z, z0), we say that a covering h : X → Z is regular if P is a normal
subgroup of R. In this case, the symmetry group of the dessin drawn on X is the
factor R/P . If P is not normal we take its normalizer Q = NR(P ) in R, that is,
the biggest subgroup of R in which P is a normal subgroup. Then, the symmetry
group is the factor Q/P . Thus, if Q does not coincide either with P or with R,
this procedure provides us with an intermediate subgroup between P and R and
therefore with a composition of coverings.
(In the general setting of coverings outside the world of dessins d’enfants we must
specify, the symmetry of what objects we consider. These objects are preimages
in X of an “elementary” object in Z which should not have any symmetry itself.)
Computing Belyi functions is a very challenging task. In certain cases they may
be computed for an infinite series of dessins depending on a few parameters, like
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star trees, chain trees, etc. But for generic dessins the frontier of feasibility lies
somewhere between the degrees 10 and 20; I know of only two computations of
functions of degree 23 and 24, both using very sophisticated techniques based on
LLL algorithm. However, in Magot and Zvonkin (2000) we were able to compute
Belyi functions for all the maps corresponding to the Archimedean solids, the
degrees of the functions in question going as far as 360. It goes without saying that
these computations were feasible only because of the symmetry properties of the
corresponding maps; thus, these complicated functions were found as compositions
of simpler ones.
Belyi functions for Platonic solids were in fact computed by Felix Klein in 1875; see
Klein (1884). Very recently, it was discovered by Muzychuk and Pakovich (2007)
that some of these functions admit significantly different decompositions in func-
tions of smaller degrees—a phenomenon that Ritt (1922) proved to be impossible
for polynomials (with two notable exceptions: polynomials xn, and Chebyshev
polynomials of the first kind Tn: for them non-equivalent decompositions do ex-
ist). I find it incredible that in the 21st century it is still possible to say something
new about Platonic solids.
Symmetry is a thoroughly studied subject, so we won’t say any more on it. We
only note that composition is a much wider phenomenon.

5.2 Operations with maps

Many standard operations with maps can very easily be expressed in terms of
Belyi functions. For example, if M is a map and f is its Belyi function then for
the map M∗ dual to M the Belyi function is 1/f . Indeed, 1/f exchanges 0 and
∞ while leaving 1 fixed; therefore, vertices become face centers and vice versa.

Example 5.1 (A map together with its dual) If we want to draw the origi-
nal map M and its dual M∗ on the same picture we should find a function taking
both 0 and ∞ to 0 while leaving 1 fixed. It is easy to verify that the function which
does the job is g(y) = 4y/(y + 1)2. Thus, the Belyi function for H = M ∪ M∗ is
h = g ◦ f where f is a Belyi function for M . Note that the result of the operation
is a hypermap even if the original figure M was a map: white vertices of M were
all of degree 2 but white vertices of H = M ∪M∗ are of degree 4. All the faces of
M ∪ M∗ are surrounded by four germs of edges and are therefore of degree 2.

In fact, in order to make an operation with a dessin drawn on the surface X , we
must first make the same operation with the elementary hypermap [0, 1] on the
sphere Y , and then send this newly obtained dessin on Y to the segment [0, 1]

on Z.
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Example 5.2 (Truncation) When applied to a polyhedron, truncation means
“cutting vertices”. For an arbitrary hypermap, it means replacing each black vertex
by a face of the same degree, and inserting a new black vertex of degree 3 inside
each germ of an edge.
Let us consider a simple map with four edges, thus eight germs of edges, shown
in Fig. 8 in upper left corner. (By the way, this map is interesting in itself: its
cartographic group is PSL3(2).) Its Belyi function can easily be computed:

f(x) = − 1

1728

(x2 − 5x + 1)3 (x2 − 13x + 49)

x

f(x) − 1 = − 1

1728

(x4 − 14x3 + 63x2 − 70x − 7)2

x
.

Below in the figure, the truncation of this map is shown. The same Belyi function
takes it to the truncation of the elementary hypermap [0, 1]. The latter is a
hypermap of degree 3: it has one simple edge consisting of two germs (the “circle”),
and the third germ is attached to it (the “tail”). The Belyi function g which takes
this hypermap to [0, 1] is

g(y) =
(4y − 1)3

27y
, g(y) − 1 =

(8y + 1)2 (y − 1)

27y
.

The composition h = g ◦ f is the Belyi function for the truncated map.

f

f g

Figure 8: Truncation of a map. In order to simplify the picture we do not show white vertices
of degree 2: one should imagine them inside each edge whose both ends are black. White

vertices of degree 1 are shown explicitly

Example 5.3 (More operations) Practically all reasonable cartographic oper-
ations can be represented as compositions. By “reasonable” and “cartographic” we
mean the following informal condition: if a transformation is made with faces (for
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example), then it must act in the same way on all faces and not on a particular
subset of them; the same condition should also be valid for vertices.

1. Transforming a hypermap into a map. We would like to color every white
vertex in black, thus transforming every germ of an edge into an edge (and
inserting inside it a new white vertex of degree 2). For that end, we only
have to compose the Belyi function of the hypermap with the function g(y) =

4y(1 − y).

2. Doubling edges. We want to replace every edge of a map by a pair of two
parallel edges. The function which makes this operation is g(y) = y2/4(y−1).

3. Medial map. Each white vertex becomes a black one; we join them succes-
sively inside each face (thus, all new black vertices are of degree 4); former
black vertices become faces centers. The operation is made by the function
g(y) = −(y − 1)2/4y.

4. Subdivision of edges. We want to subdivide every edge of a map in k parts
by inserting in it k − 1 new black vertices; taking the ends into account, an
edge will contain k + 1 black vertices. Chebyshev polynomials of the first
kind Tn are almost Belyi functions: they have only three critical values but
these values, instead of being 0, 1, and ∞ are ±1 and ∞. The preimage of
the segment [−1, 1] is a chain tree consisting of n germs of edges going also
from −1 to 1, with preimages of 1 and −1 going in turns. Therefore, we need
a little adjustment of coordinates: we first take y = 2f − 1 (here f is a Belyi
function of the original map) and apply to it the polynomial (1−T2k(y))/2.

5. Triangulation of faces. Insert a new vertex inside each face of a map and
connect it by edges with all the vertices adjacent with this face; thus, a face
of degree k is subdivided into k triangles. For the elementary hypermap
[0, 1] ⊂ C this operation means inserting a new vertex in the point ∞ and
connecting it with 0 by an edge going along the negative part of the real axis.
The Belyi function for the resulting hypermap is g(y) = −27y2/(y − 4)3.

Inclusions between triangle groups classified by Singerman (1972) give rise to in-
teresting compositions of Belyi functions. Other examples may be found in James
(1988) and Wilson (1979). Our list is in no way exhaustive.

5.3 Hidden symmetries

If a map is symmetric, or if it is obtained by one of the operations described
above, this fact can easily be observed by the naked eye. However, the world of
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compositions is much vaster than a toolbox of simple operations; more often than
not the decomposability of a map or of a hypermap does not jump to the eye. I like
to call this property of a hypermap a “hidden symmetry”, a terminology borrowed
from theoretical physics.

Example 5.4 (A non-obvious composition) This example was briefly men-
tioned elsewhere but without details. Consider a simple map with six edges shown
in Fig. 9. It is decomposable, and I believe that this fact is not evident. The only
thing we need in order to be convinced that this is indeed true is to find a system
of blocks. Four blocks, denoted a, b, c, d, are shown in Table 1.

8

5

9

11 7

6

4
10

0

1 2
3

Figure 9: A decomposable map

a b c d

0 1 2 3
4 5 6 7
8 9 10 11

Table 1: Blocks of imprimitivity of the cartographic group of the map of Fig. 9

b
c

d

a 0 1−1/8
* *8

Figure 10: A map whose germs are blocks of the map of Fig. 9

The permutations σ, α, ϕ being reduced to their action on blocks look as follows:

σ̄ = (b, c, d) , ᾱ = (a, b)(c, d) , ϕ̄ = (a, d, b) .

We can now construct a map encoded by these permutations. This map is shown
twice in Fig. 10: to the left, the labels a, b, c, d are written near the corresponding
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germs of edges; to the right, the coordinates of the vertices and face centers are
given: they correspond to the Belyi function

g(y) = −64y3 (y − 1)

8y + 1
, g(y) − 1 = − (8y2 − 4y − 1)2

8y + 1
.

In order for the function h : X
f−→ Y

g−→ Z to be a Belyi function, the critical
values of f must be taken to critical points of g (which, in its turn, takes them
to {0, 1,∞}). The first surprise is that f itself is not a Belyi function: it has
four critical values. These values correspond to the cycles of σ̄, ᾱ, ϕ̄ which become
longer while being lifted to σ, α, ϕ. For example, a fixed point c in σ̄ is lifted to a
fixed point 0 and a cycle (4, 8) in σ. Therefore, the vertex of degree 1 of the map
of Fig. 10 is a critical value of f , with its preimages being one generic point (the
vertex of degree 1) and one critical point of multiplicity 2 (the vertex of degree 2).
Pursuing these considerations we find out that both vertices and both face centers
of this map are critical values of f . Looking at their positions we conclude that
the critical values of f are 0, 1, −1/8, and ∞ (in their preimages one point is
always generic and the other one is critical, of multiplicity 2).
The second surprise: there are not one but four such functions f , and they form
a Galois orbit. All of them have the form

f(x) = K · (x − 1)2 (x − a)

x

where a is one of the roots of the polynomial

a4 − 138 a3 + 678 a2 + 26 a + 162 , (4)

while K is expressed in terms of a as

K = − 1

20 412
(13 a3 − 1779 a2 + 9508 a− 3564) .

We conclude that the map of Fig. 9 is a member of a Galois orbit containing four
elements and is defined over the splitting field of the polynomial (4). The three
remaining members of the orbit are shown in Fig. 11.

Figure 11: Galois orbit containing the map of Fig. 9 contains also these three maps
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There are, in total, 18 maps with six edges having the set of vertex-and-face
degrees (61312111, 26, 61312111). They split into three Galois orbits, of sizes 8, 6,
and 4, respectively. The orbit of size 4, having an imprimitive cartographic group
H = S3 ≀ A4 of order 15 552 = 64 · 12 (the symbol ≀ denotes the wreath product
of permutation groups), has been constructed above. For the orbit of size 8 the
cartographic group is the Mathieu group M12, and for the orbit of size 6 the group
is A12.

5.4 Belyi pairs

Computing Belyi pairs is an incredibly challenging problem. A recent calculation
of them for the maps of genus 1 up to four edges (Adrianov et al., 2007) should
be considered as a real accomplishment. Such an enterprise is fraught both with
fundamental and technical difficulties.

The main problem is to find a Riemann surface which corresponds to a particular
dessin. It turns out that for the surfaces of smaller genera there exist canonical
representations: for example, Riemann surfaces of genus 1 can be represented
as elliptic curves. But for higher genera such representations do not any longer
exist. Thus, for the dessins of higher genera we are not only unable to solve the
corresponding systems of algebraic equations: we are unable to write them down
in the first place! This is the first, and fundamental difficulty.

Then we may start from the opposite end: take a pair (X, p) where X is an
algebraic curve and p is an arbitrary (not necessarily Belyi) meromorphic function
on X , but both defined over Q. After that compose p with a Belyi function f

which would take all critical values of p to {0, 1,∞}. This is exactly what we did
in Example 3.9 for the Fermat curve. However, we were successful only because the
critical values of p were very simple. In the generic case the degree of f becomes
too big to be manageable.

The royal way consists of first preparing a Belyi function f , and only after that
looking for a pair (X, p) such that the critical values of p are among the critical
points of f . Let us return to the function of Example 3.3. Looking at formulas
(1) and (2) or, more exactly, at the critical points of f (that is, roots of f and of
f − 1) we may take, for example, an elliptic curve

y2 = x (7x − 1) (x2 + 4x − 1) . (5)

The projection p : (x, y) 7→ x is ramified over four points: x = 0 (a black vertex of
degree 6), x = 1/7 (a white vertex of degree 1), and two roots of x2 + 4x− 1 (face
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centers). Thus, a composition of p with f gives a Belyi function and a dessin on
the curve (5).
The majority of known examples of dessins of genus g ≥ 1 follow this way and
are therefore constructed using a composition. There are, however, examples of a
different nature.

Example 5.5 (Bring’s curve) In 1786 Erland Bring, a history professor at
Lund, found a change of variables which reduces a generic quintic equation to the
following form:

p(x) = x5 + a x + b = 0 . (6)

Felix Klein (Klein, 1884), pursuing the study of the equations of fifth degree, was
naturally led to consider the algebraic curve B in the projective space CP4 with
coordinates (x1 : x2 : x3 : x4 : x5) described by the following three equations:

5∑

i=1

xi = 0 ,

5∑

i=1

x2

i = 0 ,

5∑

i=1

x3

i = 0 . (7)

Indeed, the elementary symmetric functions of degrees 1, 2, 3 of the roots of p(x)

vanish; therefore, their power sums also vanish. Klein has shown that the curve B,
commonly called Bring’s curve, is of genus 4. A set of five roots of equation (6)
usually gives rise to 120 points on B which are different permutations of these
roots. For some particular values of parameters a an b the number of such points
may become smaller.
The coefficients a and b themselves are symmetric polynomials in xi of degree
4 and 5 respectively. Since we would like to consider (x1 : x2 : x3 : x4 : x5) as
projective points, the pairs (a, b) must be considered up to the equivalence relation
(a, b) ∼ (λ4a, λ5b) for any λ ∈ C, λ 6= 0. For the future use, note that the
discriminant of p is

∆(p) = 256 a5 + 3125 b4 .

There are numerous publications dedicated to Bring’s curve; the reader may con-
sult, for example, a survey paper Weber (2005). It turns out that the icosahedron
I4 of genus 4 discussed in Example 2.9 lives on this surface. The automorphism
group of B is S5 (it acts by permutations of coordinates) while the automorphism
group of I4 is A5. The additional symmetry is due to the self-duality of I4. It is
more convenient to compute a Belyi function for the hypermap H = I4 ∪ I∗

4
where

I∗
4

is dual to I4, like in Example 5.1.



360 A.K. Zvonkin

Proposition 5.6 (Belyi function on Bring’s curve) A Belyi function for the

hypermap H = I4 ∪ I∗4 is equal to

f(x1 :x2 :x3 :x4 :x5) =
256 a5

256 a5 + 3125 b4
.

Proof. The numerator of f is 256 a5. The equation a = 0 of degree 4, being
added to system (7), gives rise to a system of degree 24. In this way, we get
24 points on B: they are the black vertices of H (i. e., vertices and face centers
of I4). All of them are roots of f of multiplicity 5. From the point of view of
equation (6), a = 0 means that (6) becomes equivalent to x5 − 1 = 0. The 5th
roots of unity may be permuted in 120 ways, but the sequences obtained from
each other by cyclic permutations are proportional and therefore lead to the same
projective point.
The numerator of f−1 is −3125 b4. The equation b = 0 of degree 5, being added to
system (7), gives rise to a system of degree 30. In this way, we get 30 points on B:
they are the white vertices of H , and all of them are roots of f −1 of multiplicity 4
(cf. Example 5.1). From the point of view of equation (6), b = 0 means that (6)
becomes equivalent to x5 − x = 0. Its five roots are 0 and the 4th roots of unity.
There are 5 ways to choose which one of xi will be equal to 0, and then permute
the four remaining roots in 24 different ways, but the sequences obtained by cyclic
permutations of order 4 are proportional to each other, and we get 5 · (24/4) = 30

distinct projective points.
The denominator of f is the discriminant

∆(p) =
∏

i<j

(xi − xj)
2 .

The equation
∏

i<j(xi − xj) of degree 10, being added to system (7), gives rise
to a system of degree 60. In this way, we get 60 points on B: they are the face
centers of H (cf. once again Example 5.1). From the point of view of equation (6),
it is easy to verify that if ∆(p) = 0 then p has exactly one double root. Therefore,
the 120 permutations of the sequence of roots of p give us only 60 distinct points
on B, all of them being of multiplicity 2.
We should also verify that for all other values of f , different from 0, 1, and ∞, we
get 120 distinct points on B, but this verification is rather tedious and we omit it.
The fact that the automorphism group of the hypermap H thus obtained is S5 is
obvious. �

Felix Klein in his book Klein (1884), Part II, Chapters II and III, uses another
but also very beautiful construction. He subdivides each pentagonal face of I4 in
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five triangles by inserting a new vertex of degree 5 inside each face and connecting
it with the five vertices incident to the face (cf. 5th operation of Example 5.3).
In this way he obtains a map T which has 12 vertices of degree 10 (former ver-
tices of I4) and 12 vertices of degree 5 (former face centers of I4), 60 triangular
faces, and 90 edges. It turns out that T is a covering of degree 3 of I0, the 12
ramification points being the vertices of I0; the multiplicities of the points above
each ramification point are 2111. The best way to see this covering is to turn once
again to Fig. 2: it is nothing else but the projection of the surface underlying I4

from the origin onto the sphere. Then, if we want to get a Belyi function for T ,
what remains is to further apply the Belyi function for I0 which is given by the
following formulas:

f(x) = 1728 · (x10 − 11 x5 − 1)5 x5

(x20 + 228 x15 + 494 x10 − 228 x5 + 1)3
,

f(x) − 1 = − (x10 + 1)2 (x20 − 522 x15 − 10006 x10 + 522 x5 + 1)2

(x20 + 228 x15 + 494 x10 − 228 x5 + 1)3
.

A representation of the above covering of I0 by the triangulation of I4 as a con-
crete function h : B → C may be found in Klein’s book. The corresponding
computations are rather long, and we omit them.

Example 5.7 (Bring’s cousins) Fig. 12 shows the family of five maps with the
set of vertex-and-face degrees (5212, 26, 5212).
The cartographic group of the map a is isomorphic to A5 (acting on 12 cosets of a
cyclic subgroup C5). An exercise to the reader is to establish that this map is the
quotient of I4 by the rotational symmetry of order 5. For the maps b and c the
cartographic group is (S2 ≀A6)∩A12, of size 11 520; for the maps d and e the group
is PSL2(11), of size 660. Accordingly, the family splits into three Galois orbits:
{a}, {b, c}, and {d, e}.
For the map a, which is defined over Q, the Belyi function is as follows:

f(x) = − 1

64

(x − 1)5 (x + 1)5 (x2 − 4 x − 1)

x5 (x2 + x − 1)
, (8)

while

f(x) − 1 = − 1

64

(x4 − 2 x3 − 6 x2 + 2 x + 1)2 (x2 + 1)2

x5 (x2 + x − 1)
.

For the other cases the formulas are more cumbersome, and we omit them. The
orbit {b, c} is defined over the field Q(

√
−15), and {d, e} is defined over the

field Q(
√

5).
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a b c

d e

Figure 12: Maps with the set of vertex-and-face degrees (5212, 26, 5212)

All the five maps are self-dual. Also, the first three, a, b, and c, are symmetric,
with the automorphism group C2. Therefore, if we draw on the same picture the
map itself together with its dual, then the automorphism group of the resulting
hypermap must be an extension of order 2 of C2. A funny feature is that in the
case of the map a we get in this way the cyclic group C4 while in the case of b and
c we get the Kleinian group V4.

The map d is famous, see Filimonenkov and Shabat (1995). The number field
corresponding to the orbit {d, e} must be quadratic since the orbit contains two
elements; it must be real quadratic since the map e is axially symmetric and
therefore the complex conjugation does not send it to the map d; but a Belyi
function for d cannot be realized over a real number field since d cannot be made
axially symmetric.3

In order to construct a Belyi function for d we need to further extend the field
Q(

√
5) by an imaginary quadratic irrationality; the field computed to that effect in

Filimonenkov and Shabat (1995) is Q(
√

5,
√
−2). Then replacing

√
−2 by −

√
−2

will take the map d to its mirror image d′ which is isomorphic to d. In fact, the
map e cannot be realized over Q(

√
5) either since a mere replacement of

√
5 by

−
√

5 can only produce another mirror symmetric map. Thus, the geometric figure
for e obtained using a Belyi function will inevitably be bent; replacing

√
−2 by

−
√
−2 we get another bent figure which is the mirror image of the previous one,

and the two maps are combinatorially isomorphic to each other.

3Before making any computations we might suppose that d and e constitute two separate
orbits. In this case both of them would be defined over Q; but d cannot be realized over Q for
the same reason of not being invariant under the complex conjugation.
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The fields Q(
√
−15) and Q(

√
5) are objective characteristics of the maps in ques-

tion and cannot be replaced by other number fields while it is not clear if the same
is true for the extension by

√
−2.

But all that is not our point in this example.

Let us consider coverings of degree 5 of the complex sphere ramified over four
points which are two vertices of degree 1 and two face centers of degree 1 of
the above maps. We take all the four permutations generating the monodromy
group of these coverings to be cycles of order 5. Thus, the coverings in question
are classified by the sequences of permutations (g1, g2, g3, g4) such that all gi are
cycles of order 5 and the product g1g2g3g4 = 1. Computations with characters of
the group S5 show that there are, in total, 60 non-isomorphic sequences like that,
47 of them being asymmetric and the remaining 13 having a cyclic automorphism
group C5.
What will be the resulting surfaces, and what will happen with the maps a, b, c, d, e

after being lifted on them? It is easy to see that:

• two vertices of degree 1 become two vertices of degree 5;

• two vertices of degree 5 remain unramified and therefore repeated five times
on the covering surface, thus creating 10 vertices of degree 5;

• two faces of degree 1 become two faces of degree 5;

• similar to the vertices, two faces of degree 5 on the sphere give rise to 10 faces
of degree 5 on the covering surface;

• finally, no ramifications exist inside the edges; therefore, 6 edges on the
sphere give rise to 30 edges on the covering surface.

The result is always the same: 12 vertices of degree 5, 30 edges, and 12 faces of
degree 5, and the covering surface is therefore of genus 4.

Definition 5.8 (Uniform map) A map is called uniform if all its vertices are
of the same degree, and all its faces are also of the same degree.

Clearly, we are in the presence of uniform maps. Only one of them is regular,
namely, I4: the list of all regular maps of genera up to 15 may be found in Conder
and Dobcsányi (2001), and there is only one of them having our set of vertex-and-
face degrees. However, not being regular, the other maps are “symmetric” in our
generalized meaning of the word: they are compositions.
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We cannot guarantee that all the 5 · 60 = 300 uniform maps thus obtained are
different since some of them may turn out to be isomorphic. First of all, we
must not forget that the maps of Fig. 12 are self-dual, and some of them are
symmetric. But even more complicated phenomena may take place. As I was
informed by Jürgen Wolfart (private communication), there are six uniform and
not regular maps of this type which live on Bring’s curve! They are isomorphic to
each other and are taken to each other by automorphisms of Bring’s curve. Similar
examples (but not this one) may be found in the recent paper Girondo, Torres,
and Wolfart (2010). While two copies of I4, namely, I4 and I∗

4
, are dual to each

other, the mutual positions of the above six uniform dessins with respect to each
other remain completely unclear.
Since the plane icosahedron I0 is the only plane map having 12 vertices of degree 5
and 20 faces of degree 3, the existence of uniform maps with the same set of vertex-
and-face degrees as for I4 is already surprising in itself. Therefore, a natural
question arises: are there any other uniform maps of that type, not belonging to
the set constructed above?
A computation using Frobenius’s formula is risky since the character table of the
group S60 is of the size, approximately, 106 × 106. However, we need only the
character values for three conjugacy classes, namely, those of cyclic types 512,
230, and identity. In turns out that Maple is able to do the job. The result is
overwhelming: there are more than four million uniform maps like that! Their
exact number is still unknown since each map M is counted with the weight
1/Aut(M). It is very difficult to imagine how 12 pentagons can be glued together
in so many ways.

Example 5.9 (Not a Bring one) Let us return once again to the dessin of
Fig. 12(a). Its vertices of degree 1 are the roots of the polynomial x2−4 x−1, and
the centers of the faces of degree 1 are the roots of x2 + x − 1 (cf. equation (8)).
Then consider the curve A defined by the following equation:

y5 =
x2 − 4 x − 1

x2 + x − 1
(9)

(note that y5 has only two multiple roots, namely, y = 0 and y = ∞). We
claim that A and B are not isomorphic as algebraic curves. Indeed, there are
two disjoint classes of algebraic curves of genus g ≥ 3: hyperelliptic curves, and
curves of canonical type. A Riemann surface of genus g which is not hyperelliptic
admits a canonical embedding in the projective space of dimension g − 1 as an
algebraic curve of degree 2g − 2 (see Griffiths and Harris (1994), Chapter 2, § 3,
Section “Canonical curves”, or Miranada (1995), pages 203-207). The curves of
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genus 4, in particular, may be obtained as intesections of a quadric and a cubic
(Miranda, ibid.). This is exactly the case for the curve B: the space CP3 ⊂ CP4

is the hyperplane of the equation
∑5

i=1
xi = 0, sf. (7).

On the other hand, the curve A is hyperelliptic: the birational substitutions

y = s, t = 4 x y5 + 2 y5 − 4 x + 8, x =
1

4
· t − 2 s5 − 8

s5 − 1

transform A into the curve
t2 = 20 s10 + 80 .

Since the dessin entirely determines the complex structure of the curve on which
it is drawn, the lifting of the map of Fig. 12(a) on the curve A via the covering (9)
cannot be isomorphic to I4 which lives on B.
This is a very curious example: we have proved the non-isomorphism of two maps
without even explicitly constructing one of them, the proof being based on some
facts from algebraic geometry. I don’t know of any other example of this kind.

6. CONCLUDING REMARKS

There are other important applications of the composition, but it would be difficult
to make their overview here since it would need quite a lot of preparatory material.
Therefore, we just mention them briefly.
The problem of topological classification of polynomials has remained open for
almost 140 years. A huge amount of experimental data was obtained by the author
(see Sec. 5.4 of Lando and Zvonkin, 2004). There are a couple of well understood
exceptional phenomena; putting them aside, all known cases of non-uniqueness
of equivalence classes of polynomials with the same ramification data are due to
compositions.
The polynomial moment problem is closely related to the classical Poincaré center-
focus problem. Its aim is to describe polynomials orthogonal to all powers of a
given polynomial. The problem was recently solved, see Pakovich and Muzychuk
(2009). It turns out that all solutions are described as sums of compositions.
The problem of non-uniqueness of decomposition of polynomials was solved by
Ritt (1922); its analogue for Laurent polynomials was solved by Pakovich (2007).
The problem for general rational functions still remains open.
Last but not least, compositions of polynomials and rational functions constitute
the main subject of complex dynamical systems. Belyi functions that send the set
{0, 1,∞} to itself can be composed: the result is again a Belyi function. But this
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is only a particular case of the so-called postcritically finite dynamical systems for
which an orbit of every critical point is finite; see Pilgrim (2003). First of all, they
are also rigid and therefore defined over Q. Next, the towers of monodromy groups
play an important role. But, contrary to the Belyi case, not every such dynami-
cal system can be realized by a rational function: there are so-called Thurston’s
obstructions to that. A wonderful new world!
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