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A TRANSFORMATION OF THE PHASE SPACE OF A

DIFFUSION PROCESS THAT REMOVES THE DRIFT

UDC 519.2

A. K. ZVONKIN

Abstract. In this paper we construct a one-to-one (and quasi-isometric) transfor-
mation of a phase space that allows us to pass from a diffusion process with nonzero
drift coefficient to a process without drift. Using this transformation we construct
strong solutions of stochastic differential equations with a "bad" drift coefficient
and give other applications.

Bibliography: 21 items.

§1. Introduction

Let χ be a (Markov) diffusion process satisfying an Ito stochastic differential

equation:

dxt = b(t, xt)dt+a(t, xt)dwu

Here χ and ζ are random variables with values in R", t e [θ, Τ], w is the standard

«-dimensional Wiener process, and for all t and x, b(t, x) is an «-dimensional drift

vector, and o(t, x) is a diffusion matrix of size η χ η.

In this paper we construct a mapping u{t, χ): [θ, Τ] χ Rw -» Rw such that the pro-

cess y - u{t, χ ) has drift coefficient zero, and this mapping u{t, x) possesses the

following properties:

a) For each t £ [θ, T] the mapping u{t, x) = ui^x): Rw -> Rn is a one-to-one map-

ping on all of Rw; moreover, it is a quasi-isometry, i.e.

b) Ito's formula is applicable to the functions u(t, x) and v{t, x) (here for fixed

6 [0, f] the mapping ν Ay) = v(t, y) is an inverse to the mapping u Ax)).

Obviously, χ = v{t, y ). The mappings u{t, x) and v{t, y) allow us to reduce
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130 Α. Κ. ZVONKIN

many problems about processes satisfying equation (1) to the same problems about pro-

cesses that already do not have drift (for such processes certain problems are solved

more easily).

The decisive feature in this paper is an estimate from below of the derivatives of a

parabolic differential equation. The problem of obtaining such estimates deserves more

detailed independent consideration. Here we are concerned with it to the minimal extent

necessary for our purposes (cf. Theorem 2).

In §3 we construct the mappings u{t, x) and v{t, y) and study their properties

(Theorem 2), and also give the first applications: a very important estimate due to N. V.

Krylov is generalized to the case of functions depending on t and x, and using this we

prove that Ito's formula applies not only to functions of class C ' , but also to func-

tions of class W ' with sufficiently large p (Theorem 3).

In §4, using the mappings u and v, we prove new existence and uniqueness

theorems for solutions of equations of the form (1) (Theorem 4).

In §5 Theorem 4 is used to prove the existence of an optimal strategy for a one-

dimensional controllable diffusion process.

The author expresses deep thanks to A. N. Sirjaev and N. V. Krylov for their con-

stant attention to this work, valuable discussion and useful comments.

§2. Preliminary remarks

1. Notation. The action takes place in η-dimensional Euclidean space Rn, equipped

with an affine structure, i .e. to each point x £ Rn there is associated an «-dimen-

sional linear space Ln "with origin at the point x" (and with the natural operation of

identification between all L", χ e Rn). A scalar product generated by the metric of Rn

is fixed in Ln. A system of Cartesian coordinates is fixed in Rw.

1) χ eW1, t e[0, T].

bit, x) is a vector field on Rw, i.e. for all {t, χ) ε [θ, Τ] χ Rw the vector

b{t,x) = l :
W

For each [t, χ) e [θ, Τ] χ R", o\t, x) is the matrix

σ η . . . σ!

of the linear map σ: L™ —> Ln .

The process

Wv
is the standard η-dimensional Wiener process.

Equation (1) is understood in an integral sense: with probability 1 for all t 6 [0, T\

simultaneously
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t *

Xt=l-\r \b (s, x,) ds -f Γ σ (s, xs) dws,

131

(2)

0

where the second integral on the right is Ito's stochastic integral (cf. [l]).

2) For a mapping /: Rw -* Rm we have (cf., for example, [2]):

The derivative f'{x) is a linear map f'{x): Ln -> Lm (here y = f(x) e Rm) with
χ y

matrix \df ./dx.), consisting of m rows and η columns (here x . , · · · , χ are the coordi-

nates of the point χ in R" and / 1 ? · · · , / are functions /,: Rw -> R; namely, f,(x) =

y, if f{x) = y, where the y, are the coordinates of the point y in R w ) .

The second derivative /"(x) is a bilinear mapping f"(x): Ln χ Ln -+ Lm.

The partial derivatives of the mappings are defined analogously.

3) We introduce a symmetric matrix a{t, χ) = σ · σ* (here σ* is the transpose matrix

of the matrix σ): it will play the role of the matrix of the bilinear form on Ln, a: Ln χ
' r 3 x x

Let e .,···, e be an arbitrary basis of L" and d., · · · , d the basis biorthogonal

to it (i.e. (e., d) = 5.y).(2)

The differential operator A, ' corresponding to the process χ is defined in the

following way: for u: [θ, T\ χ R" -̂  Rw

η

4) As t h e norm of m a t r i c e s it i s c o n v e n i e n t for u s to c h o o s e | ( # . . ) | = m a x . . |<z..|;

in c o r r e s p o n d e n c e with t h i s

|/"(x)|=max

For a domain D CRn the space W >2([θ, Τ] χ D), p > 1, is the completion of the

family of C°° functions with compact support with respect to the norm

u<'·
where

U χ)lp -f- II«*(Λ * )

ί \nt,x)\pdtdx)
O,T]XD 7

liP

(^) It would be legal to assume a to be a bilinear form on the dual space (Ln)* to Ln; but

we identify Ln and (Ln)* by fixing a scalar product in Ln.

( 2) We note that if the basis e . , · · · , e is orthonormal, then e = d .

(3) The sum on the right side of (3) does not depend on the choice of basis (for example,

see [3]).
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Analogously we define the space WHD) (the term with the derivative in t is omitted

and the integration is taken over D). See [4] and [5] for more details about the proper-

ties of the spaces W.

2. The main facts about equation (1) and the associated parabolic partial differen-

tial equations that we shall need are collected in the following theorem.

Theorem 1. Suppose that the coefficients b{t, x) and a{t, x) in equation (1) satisfy

the following conditions:

A. Continuity of the diffusion coefficient: a(t, x) is continuous with respect to

the pair of arguments.

B. Uniform ellipticity of the operator <£ * : there exists a number μ > 0 such that

for any vector e e Ln

C. Boundedness of the coefficients: there is a number C such that

Then the following assertions hold:

1) There exist a probability space {Ω, J, P\ and a pair of processes \{x , w ), 3"

on it such that \w , ά \ is a Wiener process and relation (2) holds.

2) If the processes (x't , w't) and (x", w") satisfy relation (2), then all the finite-

dimensional distributions of the processes x' and x" coincide.

3) // we consider the solutions of equation (1) on segments Yt^., T\ C [θ, Τ] for

distinct initial values xtQ = x e R". then this family of solutions forms an (inhomogen-

eous) strong Markov process. The mathematical expectation with respect to the mea-

sure corresponding to this process will be denoted Ε, ν
\t Q,X )

Consider the equation

X(Xi)u(t,x) =
(4)

where u: [θ, Τ] χ Rn -> Rm and φ: Rw -> Rm, where the function φ{χ) grows to infinity

slower than e '*' for any k > 0 (i.e. φ{χ) is a "slowly growing" function), and φ e

W2(D) for any bounded domain D C R " with p > (n + 2)/2.

4) In the class of slowly growing functions there exists a solution to equation (4)

that is unique and u 6 W ' ([θ, Τ] χ D) for any bounded domain D C Rn.

5) This solution has the probability representation

U (f, Χ) = Ε (/,x)Cp (XT)·

Proof. Assertions 1), 2) and 3) proved in [6] (Corollary 3.2 and Theorem 6.2).

For assertion 4), see [5], Theorem IV.9.1 and §14 of Chapter IV there. Assertion 5)

is proved in §11 of [6] (Corollary 11.1, Remark 2).
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§3. A transformation that removes the drift

Theorem 2. Let b(t, x) and a{t, x) satisfy conditions A, B, C, and let the func-

tion u: [θ, Τ] χ Rw -> R" be a solution of the equation

u ( 7 \ * ) •-•= x.

Then there is a T > 0(4) satisfying the following conditions:

1) For any fixed t 6 [0, T] the function u(t, x) = u (x) is a one-to-one mapping

u : R" -* W1 onto all of Rw. The inverse mapping to u (x) is denoted by ν (y) = v(t, y).

The inverse of the mapping 'u: [θ, Τ] χ Rn -» [θ, Τ] χ R", "uU, x) = it, u(t, x)), will be

v'U, y) = U, v(t, y)).

2) T/?e mappings u{t, x) and v(t, y) have bounded derivatives u (t, x) and

ν {t, y); in particular, they are quasi-isometries: there is a constant m > 0 such that

m / | u(t, x2) — u(t, Xi)| \yt — y\\ /- ί .

\Xi — Xi\ \v(t,y2) — v(t,y1)\ m

the mappings u and ν take bounded sets into bounded sets.

3) The functions u(t, x) and v(t, y) belong to the classes W ' ([θ, Τ] χ D) for any

bounded set D C Rw and all p > 1. In particular, the derivatives u {t, x) and v' {t, y)

satisfy a Holder condition in t and χ with arbitrary exponent a < 1.

Proof. I. We denote by Vr

x the ball of radius r in Rw with center at the point χ

and we take r = max|T, 1 i. We shall show that the derivatives du./dx., i, k ~ 1, · · · , n,

satisfy a Holder condition in [θ, Τ] χ Vr, where the Holder exponent can be chosen

as close to 1 as desired, and the Holder constant is the same for all cylinders [θ, Τ] χ

VT, χ eW1.
X

In fact, the function uAt, x) is a solution of the equation

uk (T, x) = xk.

Therefore, by assertion 4) of Theorem 1, u, e W ' ([θ, Τ] χ Vr) with arbitrary p >

(n + 2)/2 (since the function φΛχ) = x> belongs to W (Vr) with arbitrary p > (n + 2)/2).

By the second assertion of Theorem II.3=3 of [5](5) if p > η + 2, then any derivative

du,/dx. satisfies a Holder condition in χ and t in [θ, Τ] χ Vr, where the Holder

exponent a can be chosen arbitrarily in the limits 0 < α < 1 - ( « + 2)/p (since p can

be taken as large as desired, then α is as close to 1 as desired), and the Holder con-

stant is estimated by the norm of the function uAt, x) in the space W ' ([θ, Τ] χ Vr).

But this norm, by the remark at the end of §10 of Chapter IV of [5], in addition to the

(4) By more complicated arguments we can show that all the results of Theorem 2 are true

for arbitrary finite T. However, for our purposes it suffices to obtain them for small T.

0) The possibility of using this lemma was indicated to the author by N. V. Krylov.
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constants μ and C from conditions Β and C of Theorem 1, depends only on the norm

of the function φ,(χ) = x, in the space W (Vr ) and on max r -• r + i |w,(i, x) | .
« fe r ρ χ Lo.TjxV k

In view of the probabilistic representation of the solution of (5k) (see assertion 5) of

Theorem 1) the last quantity is easily estimated by max + jx j (C is the con-
X

stant of condition C).

Finally, because of the linearity of the operator X. t the estimate of the Holder

constant must be preserved if we add an arbitrary constant to the function φ Ax) - x,

or, what is the same, if we translate the balls Vr and Vr to an arbitrary

place in the space R". Thus we have shown that the Holder constant can be chosen

to be the same for all the domains [θ, Τ] χ Vr, x 6 Rn.

II. From the assertion of part I it immediately follows that all the derivatives

du,/dx., i, k = 1, · · · , n, satisfy a Holder condition in t that is uniform in x. But

du

ox,

0,

ί~Τ ι

they all are furthermore bounded in absolute value by a common constant (and hence

the norm of the matrix of u is bounded: \u (t, x)\ < K).

III. If two bounded functions satisfy a Holder condition with exponents α and β,

a < β, then their product (and obviously, their sum) satisfies a Holder condition with

exponent a.

In fact, let

then

I / (h) g (h) - / (zi) g (zi) 1 = 1/ W g (za) - / (za) g («ι) :- / (z2) a (h) - / (zi) g

-j- M21 / (zg) - / (Zl) | <M1K21 za - zx | p -l· Aia/Cil 22 - Zi Γ < Const -{ζ,-ζ, | α .

Corollary, det u {t, x) satisfies a Holder condition in t uniformly in x.

Analyzing the proofs of parts I and II, it is easy to see that the estimate of the

Holder constant for det u (t, x) depends only on Τ and on the constants μ and C of

conditions Β and C of Theorem 1, where this estimate does not grow with a decrease

in T. Hence, if Τ is sufficiently close to 0, then det u'xit, x) (uniformly in x) is

close to det u'{T, x) = det φ\χ) = 1, i.e.

In what follows, unless the contrary is stated, we shall assume that Τ has been

chosen to be so small that inequality (6) holds for it.
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IV. Let λ . {t, x) be the smallest (in absolute value) eigenvalue of the matrix
m in σ

u'(t, x). From the inequalit ies \u' < Κ and det u > k it follows that Ι λ . {t, x)\ >
χ η ' χ — χ — ' m i n ' —

c > 0, from which we get
|u(t, xt) — u{t,xx)\^c\x2 — xx|. (7)

Condition (7), as shown in [7] (Corollary to Theorem II), is sufficient for the global

invertibility of the mapping u\x)» We note that for dimension η > 1 this fact is not

trivial. In particular, the single inequality (6) is in general insufficient for the global

invertibility of u (x) (although it is sufficient for local invertibility).

From (7) we also get the boundedness of all the derivatives dv,/dy. by the con-

stant l/c.

The mapping u is obviously also invertible. Its derivative at the point it, x) is

an (η + Ι) χ in + l) matrix:

u' (/, χ) = (
1 Ο . . . Ο

Since u 6 L (with any p > l), it follows that 'it satisfies a Holder condition (with any

a< l) and hence takes bounded subsets of [0, Τ] χ R" into bounded sets. The Jacob-

ian of u{t, x) coincides with the Jacobian of uix).

V. In order to complete the proof of the theorem it remains to show that for any

bounded domain Ε C Rw the function v(t, y) belongs to W^>2([0, Τ] χ Ε) for all p > 1.

First suppose u e C°°; then (see, for example, [2]) the following assertions hold:

1) v' is an «-vector

»/' ('. y) = — ("xY1 V, ν (t, y)) • ut (/, ν (t, y)) = - (μ'χγ
Λ • ut.

2) ν is a linear mapping v': Ln -> Ln, inverse to the mapping u : Ln -» Ln:

v'y(t,y)=--(u'x)-1 (t,u(t,y)\

3) The second derivative v" is a bilinear mapping v" : Ln χ Ln -» Ln, which is

given by the formula

Vyy{.lv k) = — Κ ) " ' · ""xxiiu'xY1 · h> i»*)'1 • kl

where /„ /- e Ln and u : Ln χ Ln -» Ln.
1 2 y xx χ χ y

Now suppose u e W ' ([0, f] χ D), where the set [θ, Τ] χ D contains the inverse

image of the set [θ, Τ] χ Ε under the map u. Consider the functions u, € C°°,

\\uk - u\\ 1 2 -» 0 as k -» oo. Without loss of generality we may assume that for all

functions uk the inequalities (6), (7) and |(«feV | < Κ hold. We shall show that the

derivatives (v,)', (v,)' and {v,)" converge in L to the expressions 1), 2) and 3)

respectively.

a) v k^> ν uniformly in each bounded domain. In fact, put ν At, y) = x, ana

v{t, y) = ΛΓ; then
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but, beginning with some k,

I uk (t, xk) — u (t, Xk) | < ε

(since if p > {n + 2)/2, then uk -» u uniformly in each bounded domain; [4], §8.1), and hence

\u(t, X)— U{t, X f e ) | < e ;

but in view of (7)

|u(t, x) — u(t,xk)\^*c\x — xk|,

from which |x — χ A < e/c, as was required.

b) We shall show that if fk(t, x) -» fit, x) in L then the functions /, it, y) -

fit, vit, y)). In fact,

$\fk{t,Ok{t,y))-f(t,O(t,y))\pdtdy.

< 2 P ^ | /* (t, vk (/, y)) - / it, Ok <tt y)) \p at ay

+ 2f' j | / (/, vk (t, y)) -f{t,O{t, y)) Γ Λ ay.

By the change of variables v^t, y) = χ the first integral transforms to

k(t, x)-f(t, x)\pdtdx->0,

and the second integral tends to 0 since v, converges uniformly to v.

c) Our assertion now follows from the fact that u, -* u in W ' (i.e. the derivatives
κ p

of u, converge in L to the corresponding derivatives of u) and all the elements of

the matrices (" )~ and ((«.) )™ are bounded.

Theorem 2 is proved.

Put yt = u{t, x(). Then obviously x{ = v{t, y^. If we could apply Ito's formula,

we would obtain

dyt = \X(Xt)u (i, xt)\ at \- [ux (/, xt) • σ (/, xt)\ dwt, (8)

and since ^Xt'u(t, χ) Ξ 0 in view of (5), then dyt = s(t, y^idw(, where

s(t,y) --u'x{t,v{t,y))-a(t,v(l,y)). (9)

But the function u{t, x) does not have two continuous derivatives in x and one in t,

as is required by the usual Ito formula. Nevertheless, we shall show that in fact Ito's

formula is applicable to a wider class of functions than C ' (and, in particular, to

u{t, x) and v{t, y)).

Theorem 3. Suppose the coefficients of equation (1) satisfy conditions A, B, C.

Then the following assertions are true'.

a) // /(i, x) £ L ([0, Τ] χ D), D C R" is a bounded domain and p > η + 2, then
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Λ

Ε j \[(t,xt)\dt<M | | / | | v (10)
0

where τ is the moment of the first passage of the process χ from the domain D, Τ ί\ τ

= min{7\ τ\, and the constant Ν depends only on Τ, μ and C.

b) // the function u{t, x) e W*'2([0, Τ] χ D), p > η + 2, then for y( = u(t, χf) rela-

tion (8) holds.

Estimate (10) plays a very important role in the theory of stochastic differential

equations. For functions f(x) not depending on / (and for a wider class of processes

χ ) , this estimate is obtained in [δ] by means of the theory of convex polygons. For

functions fit, x) depending on /, but for processes χ with zero drift coefficient, it

is obtained in [6], Estimate (10) plays the main role in the proof of Ito's formula: our

argument is completly analogous to the proof of Item's formula for functions not depend-

ing on t and belonging to W (Theorem 4 of [9]).

Proof of Theorem 3. I. The matrix s{t, y) defined in (9) satisfies conditions A,

B, C. In fact:

1) s(t, y) is bounded and continuous, since o\t, x) (by conditions A and C) and

u it, x) (Theorem 2) are bounded and continuous, and v{t, y) is continuous.

2) A = s · s* = (u'x • σ) • (u'x • a)* ••= ux · σ · σ* · (ux)* ~ u'x · a · {μχ)*\

the uniform ellipticity of the operator A follows from the uniform ellipticity of the

matrix a (Condition B) and the uniform nondegeneracy and boundedness of the matrix

u (Theorem 2).

II. Consider a pair of processes \(y , w), J" \ satisfying the condition

dyt -= s(t, yt)djutt

y0 = ζ·

Such a pair of processes exists (cf. Theorem 1, assertions 1)—3)). Let v(t, y) e

W ' ([θ, Τ] χ E), p > η + 2. We shall prove an equality that is equivalent to Ito's form-

ula, in an integral formulation: if δ is the first exit time of y from E, then

ΓΛδ ΓΛδ

ν(Τ/\δ, yTA&) - υ (0, ζ) - J £Wtv (t, yt) at -f J vy (t, yt) · s (/, yt) dwt. (12)
ο ο

1) In Lemma 5.2 of [6] for processes y with zero drift coefficient the following

estimate is proved (the same as in (10)): if f{t, y) e L and p > η + 2, then

TA6

Ε j \F(t,yt)\dt<N-\\f\\h. (13)
0

2) Applying estimate (13) to the first integral on the right side of (12), we find

that the integral is defined and

ΓΛδ

Ε I' | Λ ( / , yt)\dt^M. | | Λ \ \ L p < Ν , - \ \ υ \ \ ψ ΐ Λ . (14)
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3) Applying estimate (13) to the second integral on the right side of (12), we will

get that the integral is defined and

ΓΛ6 ΓΛ6

s (t, yt) dwt ^ M2 • Ε

» (15)

ρ

4) If the function v{t, y) is sufficiently smooth, then (12) coincides with the

usual Ito formula. Now suppose that ν e W ' . We choose a sequence of smooth func-

tions ν At, y) such that \\v, — v\\ , Ί -» 0 as k -» oo. Then
k It ψί,ί

a) by Sobolev's theorem ([4], §8.1) vk -> ν for p > (n + 2)/2 uniformly in [θ, Τ] χ

Ε, which guarantees the (almost sure) convergence of the left side of (12);

b) the integrals of v, in the right side of (12) converge to the corresponding inte-

grals of ν in view of the estimates (14) and (15.

III. We take ζ- w(0, ζ), and the function v{t, y) of Theorem 2; then the Ito formula

can be applied to v(t, y); we shall show that the process χ = v(t, y ) satisfies equa-

tion (1). Actually, according to (3) and (12),

dxt --= U't (t, yt) + γ 2 o'yy (t, yt) (lb I,) · A (t, yt) (kh k,) dt

+ v'y{t, yt) · s(t, yi)dwu

where / , , · · · » / is an arbitrary basis of Ln and k^, · · · , k a basis biorthogonal

to it.

1) We compute the diffusion coefficient: ν · s = ν · u · σ = a{t, x), since v' =
, y y χ ' y

{ u

x

] '

2) We compute the drift coefficient (cf. part V of the proof of Theorem 2):
\ ι / #\ _ ι ^ /

b) \(lf 1) = - (4·)" ' · »:M~>- ' · ' , («ι?" '; I? = - Ι·!?" ' · p ' f ·,->. where
e .,'··, e is a basis in Ln which is the inverse image of the basis I^, · · · , / under

the mapping u .

c) The matrix of the bilinear form A = s · s* = u · σ · σ* · (#^)*; the value of this

form on the pair of vectors k., k. € Ln coincides with the value of the form a = σ · σ *

on the pair of vectors d. - («')* · ^ ., <a?. = («' )* · k . (cf. [3D; the vectors dy · · · , i/

obviously form a basis of L" biorthogonal to the basis e .,···, e (since \e., d) —

d) Hence the coefficient of dt is equal to

uxT1 u't + j 2 u"xx &' ei>' a<d'· di> l·
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But £ Xt u - 0 by the definition of the function u{t, x), i.e.

u't + — Y. axx(ei, ej) · a (dh d,) = — u'x · b;

and hence expression (16) is equal to (z/)~ · u · b = &(i, x).

IV. Now we shall prove (10). We have
ΓΛτ Τ/\τ 7/yt

Ε Γ \f(t,Xt)\dt=E
ο

ί

< Ε
ο

where [θ, Τ] χ Ε is a cylinder contained in the set Q, which is the image of the set

[θ, Τ] χ D under the mapping u, the function

ίο, (t, i/)e [0, rj x

and δ is the first exit time of the process y( from the domain Ε (δ > τ almost surely).

The last inequality in (17) follows from (13). Here we also use the fact that the pro-

cess χ satisfying equation (1) is unique in the sense of measure (cf. assertion 2) of

Theorem 1)), and therefore, in calculating the expectation, as χ we can take v{t, y{).

Furthermore,

t,y)\pdtdy=l\g(t,y)\pdtdy^$\f(t,O(t,y))f'dtdy
[O,T]XE Q

pj* \f(t, x)\pdetu'x(t,

[0,

and hence | |g | |L 6 5 const· | |/ | |L/,> which in conjunction with (17) proves (10).

V. In order to prove the Ito formula (8), it is sufficient to repeat the arguments of

part II verbatim, using estimate (10) each time instead of (13).

Theorem 3 is proved.

Remark. The results of Theorem 3 extend trivially from small Τ to arbitary finite T.

§4. Strong and weak solutions of stochastic differential equations.

Existence and uniqueness

1. The classical existence and uniqueness theorem for a solution of equation (1)

(cf. [10]) requires that the coefficients b and σ satisfy (uniformly in t) a Lipschitz

condition in x. Here the solution χ is constructed as a measurable functional of the

process w . The later development of the theory, however, required an essential

extension of the class of admissible coefficients. Many extremely important results

in this direction have been obtained, for example, in [ l l ] , [9] and [6]. However in

all these papers a solution of equation (1) is not understood in the sense of [lO]: it

is constructed on another probability space, with another Wiener process w , etc.;

briefly, a measure is constructed which corresponds to the coefficients b and σ, or a

weak solution (for a complete formulation see below). The uniqueness as a rule is not
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understood in the sense of the coincidence of the trajectories of the two solutions, but

in the sense of the coincidence of the corresponding measures (an exception is pre-

sented by [12], where trajectorial uniqueness is studied). The well-known example of

Tanaka given below shows that the existence of a weak solution does not mean the

existence of a strong solution, and weak uniqueness does not imply strong uniqueness.

For studying many questions it is entirely sufficient to obtain a measure as a solu-

tion of equation (1): to this relate questions connected with the study of the correspond-

ing parabolic and elliptic equations, or limit theorems of various sorts. Meanwhile

other results (e.g. comparison theorems like Lemma 4 of §16 of [13]) simply lose all

meaning for weak solutions.

In Theorem 4 we shall prove the existence of a strong solution and its uniqueness

in the trajectory sense under substantially weaker (as compared with [10] or [12])

assumptions on the drift coefficient. Here we impose a nondegeneracy condition on

the diffusion coefficient (which was not done in [10] or [12]).

2. Definitions.

1) Strong solution. We start with a probability space |Ω, J , PJ, a Wiener process

\w , 3""Μ(6) on it and measurable functions b^·. [θ, Τ] χ Rw -> R, k = 1, · · · , « , and

ο.:. [θ, Τ] χ Rn -» R, i, 7 = 1, · · · , n. We must construct a process χ t that for each t

is measurable with respect to the σ-algebra JJ(R W ) χ J"*", generated by the random vari-

ables ζ and w , s < t (here S(RW) is the σ-algebra of the absolutely measurable sub-

sets of Rn) and such that equality (2) holds with probability 1. Such a process

\x , S(RW) χ 5™\ is called a strong solution of equation (1).

2) Weak solution. We start with the functions bk(t, x) and σ.it, x). We must

construct a probability space {Ω, J, P\ and a pair of processes \{x , wf), Gt\ on it

such that \u> , G \ is a Wiener process and relation (2) holds. The pair of processes

{(x , w ) , G \ is called a weak solution of equation (1).

Here the process χ is not required to be measurable with respect to the σ-algebfa

IB(R") χ JW, generated separately by the random variables ζ and w , s < t. In other

words, χ is not a measurable functional on the Wiener trajectory. And therefore from

the existence of a solution for one Wiener process wt we do not obtain the existence

of an analogous solution for another Wiener process w .

3) uniqueness. We shall say that a solution (weak or strong) of equation (1) is unique in

the weak sense or unique in the sense of measure, if all the finite-dimensional distributions

coincide for any two processes x^ ' and x^ '.

We shall say that a solution (weak or strong) of equation (1) is unique in the strong sense

or unique with respect to trajectories if:

a) For strong solutions: if x | X ) and x*2 ) are two solutions, then

^ 2 ) - ^ Ί > 0 } = 0 ; (18)

( 6 ) $™ i s the σ-algebra generated by the events |a>: wjco) er, s <t\; we shall assume
that it is complete w i t h respect to P .
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b) for weak solutions: if (ΛΤ ', u/ ') and (x* ', ur ') are two solutions, then from

the equality w = w for all t e[0, T] a.s. (naturally it is also assumed that

{ Q ( l ) f J d ) , p ( D | = { Q (2) f y(2) f p ( 2 ) 0 e q u a l k y ( 1 8 ) f o U o w s >

The main results about weak solutions of equation (1) are collected in Theorem 1:

for the existence of a weak solution and its uniqueness in the sense of measure condi-

tions A, B, C of Theorem 1 are sufficient.

3. Example. The following example was first considered by Tanaka. It was later

studied by many authors. We consider the equation

dxt = σ (xt) dwt,

where

1, x>0,

Ι—ι, * < o ,

(note that σ {χ) = 1).

a) Weak uniqueness. The martingale χ = fi. σ{χ )dw , according to §2.5 of [ l],

is a Wiener process relative to the new time τ = J Q σ {χ )ds = t, which in the given

case coincides with the old time. Hence any solution χ has the same (namely, the

Wiener) finite-dimensional distributions.

b) Existence of a weak solution. As χ we take an arbitrary Wiener process

and construct w - JQ σ(χ )dx . The process w is also a Wiener process (we can

make the same change of time as in part a)), where dw = o{x )dx from which we con-

clude that

a (xt) dwt -•= σ (xt) σ (xt) dxt = dxt.

Hence (χ , w) is a (weak) solution of equation (19).

c) Absence of strong uniqueness. Along with the solution (χ , w ) equation (19)

also has the solution (— χ , w )·

d) Absence of a strong solution. No solution of equation (19) is strong, i.e. χ

is automatically not measurable with respect to the σ-algebra J " \ In order to see

this, we consider the random variable θ the local time described by the process χ

at 0. Since χ is a Wiener process, θ is represented as (cf. [ l] , §3.8)

t

Ί-Ί -" xt —

In view of the obvious symmetry we have

0/ ^ x~t -r \ X(-oo,o] {Xs) dxs.
0

By adding these two equalities we obtain
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t t

2Bt = | Xt\ — ( s g n xs dxs --= xt\— \ s g n xs · σ (x s ) djus = | xt | — wt,
%) *)
0 0

from which, by the definition of local time,
t

1 C
wt = Ι Λ:/ I —26^ — I xt I — litn — \ Χ[0,ε] (I xs |) ds,

εΐο ε J
ο

i.e. wt is measurably expressed by \xf\, and a™ Cay\. Assuming that the process

χ is J"^-measurable, we obtain the absurd consequence Jx C J" ' x ' .

It would be interesting to construct an analogous example with continuous coeffi-

cients aix).

4. Theorem 4. Let the coefficients bit, x) and ait, x) satisfy conditions A, B, C

of Theorem 1 and suppose that one of the following two conditions holds:

1) The diffusion satisfies a Lipschitz conditions, and the drift, a Dini condition:

| σ (t, *a) — a it, xx)\ < K\ *2 — *! |,

0

where pir) is the modulus of continuity of the function bit, x).

2) χ is one~dimensional, bit, x) is bounded and measurable, and

~~- 2 1 | ι - ^ 2 '

Then equation (1) has a strong solution that is unique with respect to trajectories.

Proof. We shall first prove the theorem for small t (namely, for t e [θ, Τ], where

Τ comes from Theorem 2).

1) If the coefficients of equation (5) satisfy a Dini condition, then the second

derivative u" is bounded (cf. [14]), and hence u it, x) satisfies a Lipschitz condition

in x. Since ait, x) is Lipschitz in χ and vit, y) is Lipschitz in y, the function

sit, y) defined by (9) is Lipschitz in y.

Hence, according to Ito's theorem [ΐθ]. equation (11) has a strong solution y

that is unique with respect to trajectories. In this case the process χt = vit, y^j,

according to part III of the proof of Theorem 3, is a solution of equation (1). The mea-

surability of χ with respect to the σ-algebra S(Rn) χ J"^ is obvious in view of the

measurability of y and the continuity of vit, y).

Finally, if equation (1) has two distinct (strong) solutions x̂  and xt \ then

equation (11) also has two (strong) solutions ŷ  = uit, x̂  ') and ŷ  = uit, x^ ')

(they are different in view of the single-valuedness of the mapping uit, x)), which

contradicts the theorem of Ito .

2) In the one-dimensional case (for measurable bit, χ)), ζ/(ί, x) satisfies a Holder

condition with arbitrary exponent α < 1 (cf. Theorem 2), and ait, x) satisfies one with

a > Vi; hence both sit, x) = u it, x) -ait, x) and sit, y) = sit, vit, y)) are Holder with

exponent α > η .
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That s(t, y) is Holder (with α = Vi), according to Theorem 1 of part I of [12],

guarantees the uniqueness with respect to trajectories of a solution to equation (11).

We shall prove the existence of a strong solution for (11). Let (y , u> ) be a weak solu-

tion of (11). By Corollary 3 of Part I of [12] from the strong uniqueness it follows that

there exists a mapping F: R χ CrQ ,̂ι -> CrQ j,i, measurable with respect to the complete

σ-algebra of Borel sets (more precisely, absolutely measurable) such that

a. s. (20)

(where y Q and wQ are the trajectories of the corresponding processes on the time in-

terval [θ, Τ]). We define a process y by a formula analogous to (20), i.e. using the

same mapping F but the original Wiener process w :

(21)

and we shall show that yt satisfies equation (11).

In fact, the measure corresponding to the pair of processes (v , w ) obviously

coincides with the measure corresponding to (y , w ). Therefore

/' - V (~ t \-
E sup \yt — ζ — s(t, yt) dwt = Ε sup \yt — ζ — i s (/, yt) dwt = 0 ,

teio,T]\ J j te[o,T][ J I

it, yt) djut

and hence we have
t

ό

with probability 1 for all t at once.

The measurability of y relative to %{R) Χ J'"' obviously follows from the fact

that a representation of the form (20), (21) can be constructed on any interval [θ, T] C

[θ, T]. AS in step 1 of the proof, the process χ = v{t, y ) is the unique (with respect

to trajectories) strong solution of equation (1).

3) We shall prove the assertion of the theorem for any finite Τ > 0. For this we

divide the interval [0, T] into m parts by the points 0 = tQ < 11 <> > - < t _ l < t = Τ

so that each interval [t,, t,+-^\ will be small enough that Theorem 2 holds for it. We

construct a process χ as follows: we write the chain of stochastic differential equa-

tions

dxt = b (/, xt) dt + σ it, xt) d.jju t e [0, tx\,
(22-0)

dxt -= b (t, xt) dt -]- σ (t, xt) dwu 16 [/*, tk], ],

(22-λ)

w h e r e a s t h e i n i t i a l v a l u e o f xtu o n it,, t,,A e a c h t i m e w e t a k e t h e r a n d o m v a r i a b l e
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xt,, obtained as a result of solving the preceding equation on \.t,_,, tA.

Each equation (22-κ), κ = 0, · · · , m - 1, has a strong solution that is unique with

respect to trajectories. Hence the process χ given by (22) exists and is unique. Its

measurability with respect to JJ(R W ) Χ S™ is obvious. To prove the theorem it remains

to note the following facts:

a) The process χ satisfies equation (1) on the whole interval [θ, Τ]. In fact,

for example, for t e[t,, tA

t t

Xt - xtx -+- [b (s, xs) ds f f σ (s, xs) dws;

but

U UU U

xtx-=l\- j" b (s, xs) ds + j" σ (s, xs) dws,
όο ό

and, substituting the expression for x ^ in the first equality, we obtain

t t

xt = I + f & (s, x4) cfs + j* σ (s, xs) die;s.
0 0

the procedure for the remaining intervals [t,, t,+A is analogous;

b) Any solution x of equation (1) also satisfies equation (22).

Theorem 4 is proved.

5. We make several remarks about possible generalizations of Theorem 4.

1) If the drift coefficient satisfies a Dini condition, then the Lipschitz condition

on the diffusion coefficient can be replaced by any condition that guarantees the strong

uniqueness for a process without drift (cf. Part II of [12]). In fact, all these conditions

in [12J are formulated in terms of the modulus of continuity, and the modulus of continu-

ity of sit, y) varies in comparison with a{t, x) by no more that a constant factor (since

u is Lipschitz).

2) If the drift coefficient does not satisfy a Dini condition (for example, if it is

discontinuous), then, as the example in [15] shows, u"χ can be unbounded in a neighbor-

hood of some point. By changing this example a little, perhaps even by setting o{t, x)

Ξ Ε (the identity matrix), it is possible to obtain for s{t, y) a modulus of continuity

which already leads to nonuniqueness of the solution; cf. the example in Part II of [12].

Thus, so far we have not succeeded in extending the result of Theorem 4 to the case

of a measurable coefficient bit, x) (in dimensions η > 2).

However, the nonuniqueness example in [12] uses the degeneracy of the diffusion

coefficient in an essential way. If, using the uniform nondegeneracy of sit, y), we

were able to extend the strong uniqueness theorem to an arbitrary Holder class (or even

to functions satisfying all the Holder conditions with a < 1, i.e. just as z^), the result

o/ Theorem 4 would automatically remain true for any measurable (and bounded) drift

coefficient.

3) On unbounded coeffieients. Conditions Β and C of Theorem 1 can be weakened,

by requiring the following:
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a) Conditions Β and C hold on [0, Tj χ D for any bounded domain D C R" (the

constants C and μ can depend on the domain).

b) On the coefficients bit, x) and ait, x) we impose any conditions guaranteeing

the existence (or extendability) of a weak solution (for example, the linearity of the

growth of the coefficients to infinity; for other possible conditions see [16] and [l]).

In fact, let bit, x) and ait, x) coincide with bit, x) and ait, x) on [θ, Τ] χ D,

and let them be defined on the complement so that conditions Β and C hold everywhere.

Then the solution χ of equation (1) with coefficients b and a exists and is unique in

the strong sense and (almost surely) coincides with the solution x of (1) with coeffi-

cients b and a up to the moment of time rD of passage of the process χ from the

domain D. But the question of whether r

D ~* °° (a.s.), if the domain D, extended, fills

up the whole space, is in no way connected with the question of whether χ is a strong

or weak solution. The answer to this question depends only on the measure generated

by the process χ .

§5. The existence of optimal strategies

1. In the study of controllable diffusion processes proofs of existence theorems

for optimal strategies meet with difficulties connected with the fact that already in the

simplest examples optimal strategies lead to discontinuous drift coefficients and it is

unclear whether a process with such a drift exists. Therefore for a rigorous account it

is necessary either to use weak solutions and to actually replace the original control

problem along individual trajectories by another—an extremal problem on the choice of

best measure (for example, see [17])—or to impose on the problem strong enough restric-

tions so that the optimal strategy starts in a Lipschitz class (for example, see [18], [l9l)·

Using assertion 2) of Theorem 4, we shall prove the existence of an optimal strategy

for a one-dimensional controllable diffusion process (the controlling parameter is only

included in the drift coefficient, not in the diffusion coefficient).

2. Lemma. Consider the equation

Ju II (t X) — / (t X)

(23)

α (Γ, χ) =- φ (χ),

where u: [θ, Τ] χ R" -> Rm, f: [θ, Τ] χ Rn -> Rm and φ: Rw -» ftm, and where the func-

tion fit, x) is bounded and measurable, and φix) is bounded and twice differentiable.

We make the following assertions:

1) Equation (23) has a unique solution, which for any p > 1 and any bounded

domain D C R " belongs to the class Wl'2i[0, Τ] χ £>).

2) This solution has the probabilistic representation

(T

\ > ' / — \1,Λ) ( | / y-, ~ s / -,,_. , yy \.VJ / / .
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Proof. I) Assertion I is proved in [5], Chapter IV, §14.

2) We apply Ito's formula to uit, χ ); we obtain

Τ Τ

U (Γ, XT) — U it, Xt)= Ϊ %** U (S, * s) ds -f marti ngale = — C /(s, jes) ds \- martingale;

taking the expectation Eit, x) of both sides and replacing uiT, xT) by φixτ), we

obtain
Τ

Ε 0,*)ψ (*r) — " (̂ , X) -- — Ε (/,*) f / (s, ATc") dS,
j / v»» *sf "*>i

ο

as was required.

Remark. The lemma admits many natural generalizations: solutions of equation

(23) with increasing functions / and φ have a probabilistic representation (under

suitable restrictions on their growth), with a function / £ L· ([θ, Τ] χ D) for sufficiently

large p, and also solutions of problems in bounded domains.

3. 1) A family of (Markov) diffusion processes

dxj --= b it, x*, d)dt j - σ (t, xf) dwt,

xdt = x,

is given on [θ, Τ] χ R, which satisfies the following conditions:

a) d £ D C Rw; the set D is compact; it is called the control set.

b) For each d the coefficients bit, x, d) = ̂ J^» x) and ait, x) satisfy conditions

A, B, C of Theorem 1; the constants in conditions Β and C do not depend on d.

c) The function bit, x, a) is measurable with respect to all the variables and

continuous in d.

d) \ait, x2)-ait, χ λ ) \ <\χ2-χγ\
α, a>Y2.

2) A strategy on the interval [t, T] is a mapping δ: [t, T\ χ Ω, ̂  D which is

Br ~i χ J"-measurable in all the variables and J -measurable in ω for each 5 £\_t, T\.

We substitute the random variable d(t, ω) in the coefficient bit, x, d); if the equa-

tion (1) with the new coefficient bit, ω) = bit, χ (ω), δ(ί, ω)) has a solution, then the

expectation with respect to the measure thus obtained will be denoted Ε, γ

A problem consists of the determination of a strategy δ* which would give

Ε ft'.x) \ f (s, xs, 6j) ds \- φ (xT) - sup Ε 6

{t,x) If / (s, Jfs, fis) ώ -j- φ ( χ Γ ) | = ̂  ('· * ) .

where

e) The function φix) is bounded and twice differentiable; the function fit, x, d)

is bounded, measurable with respect to all the variables and continuous in d.

3) We write the Bellman equation:
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- -!- - σ 2 ( / , Λ ; ) — 7 -t- sup ft (i, x, d)- f / /, *, if) - 0 ,
d*1 2 5x2 d£D I dx J (24)

if (Γ, χ) -=-- (ρ (x).

a) Equation (24) is quasilinear and hence it has a unique solution possessing suf-

ficient smoothness (cf. [5], Chapter V, §6).

b) The function bit, x, d)du/dx + f(t, x, d) (where u is a solution of equation (24))

for each fixed [t, x) is a continuous function on the compact set D; hence it admits a

maximum at some point d* = d*(t, %); according to Theorem IX of Appendix III of [20]

the function d*(t, x) can be taken to be measurable.

c) Hence the function u{t, x) also satisfies the equation

^ + 1 σ2 (/, χ) ̂  + b (/, x, d* (/, x)) ̂  + / (U x, d* (t, x)) = 0,
at 2 dx2 dx

u(T,x) - φ(.ν),

and, according to the lemma,

u (t, x) = Ε f^) J' / (s, xs, d* (s, ^s)) ds h φ (*r) ,

where ΛΓ is a solution of the equation

dxt = 5 (/, JC/, ci* (/, A:/)) dt -r a (t, xt) dwu

Xt = X,

which exists according to assertion 2) of Theorem 4. By the same token, u{t, x) is the

payoff for the strategy δ(ί, ω) = d*{t, χ (ω)). Therefore u(t, χ) < U(t, χ).

d) We take an arbitrary d e D and the function

«' (/, X) = Ε f/>x) I j / (S, Â , d) ds + φ {A.

Then £ r f« r f(i, x) + fit, x, d) = 0 (by the lemma) and £du{t, x) + fit, x, d) < 0 (by (24)),

whence X (u(t, x) — u (t, x)) < 0. Hence for each fixed d e D the function u(t, x) —

u [t, x) is excessive for the process χ . Therefore, by Theorem 4 of [2l], u{t, x) >

Uit. x).

Thus we have proved the following result.

Theorem 5. 1) The cost U(t, x) is the {unique) solution of the Bellman equation

(24).

2) The strategy 8*(t, ω) = d*{t, χ ), where d*(t, x) is the function constructed in

part 3b above, is optimal.

Received 10/APR/73



148 Α. Κ. ZVONKIN

BIBLIOGRAPHY

1. Η. P. McKean, Jr., Stochastic integrals, Probability and Math. Statist., no· 5, Academic

Press, New York, 1969. MR 40 #947.

2. L. Schwartz, Analyse mathematique, I, Hermann, Paris, 1967. MR 37 #2558a.

3. I. M. Gel fand, Lectures on linear algebra, 4th ed., "Nauka", Moscow, 1971; English

transl. of 1st ed., Interscience Tracts in Pure and Appl. Math., no. 9, Interscience, New York,

1961. MR 23 #A152.

4. S. L. Sobolev, Applications of functional analysis in mathematical physics, Izdat.

Leningrad. Gos. Univ., Leningrad, 1950; English transl., Transl. Math. Monographs, vol. 7, Amer.

Math. Soc, Providence, R. I., 1963. MR 14, 565; 29 #2624.

5. O. A. Lady2enskaja, V. A. Solonnikov and Ν. Ν. Ural ceva, Linear and quasilinear equa-

tions of parabolic type, "Nauka", Moscow, 1967; English transl., Transl. Math. Monographs,

vol. 23, Amer. Math. S o c , Providence, R. I., 1968. MR 39 #3159a,b.

6. D. V. Stroock and S. R. S. Varadhan, Diffusion processes with continuous coefficients.

I, II, Comm. Pure Appl. Math. 22 (1969), 345-400, 479-530. MR 40 #6641; #8130.

7. F. John, On quasi-isometric mappings. I, Comm. Pure Appl. Math. 21 (1968), 77—110.

MR 36 #5716.

8. N. V. Krylov, A certain estimate from the theory of stochastic integrals, Teor. Vero-

jatnost. i. Primenen. 16 (1971), 446-457 = Theor. Probability Appl. 16 (1971), 438-448. MR

45 #7841.

9. , On the stochastic integral of Ito, Teor. Verojatnost. i. Primenen. 14 (1969),

340-348 = Theor. Probability Appl. 14 (1969), 330-336. MR 42 #5350.

10. K. Ito, On stochastic differential equations, Mem. Amer. Math. Soc. No. 4 (1951). MR

12, 724.

11. A. V. Skorohod, On the existence and uniqueness of solutions of stochastic differential

equations, Sibirsk. Mat. Z. 2 (1961), 129—137; English transl., Selected Transl. Math. Statist,

and Probability, vol. 5, Amer. Math. S o c , Providence, R. I., 1965, pp. 191-200. MR 24 #A2435.

12. T. Yamada and S. Watanabe, On the uniqueness of solutions of stochastic differential

equations. I, II, J. Math. Kyoto Univ. 11 (1971), 155-167, 553-563. MR 43 #4150; 44 #6071.

13. I. I. Gihman and A. V. Skorohod, Stochastic differential equations, "Naukova Dumka",

Kiev, 1968; English transl., Ergebnisse der Math, und ihrer Grenzgebiete, Band 72, Springer-

Verlag, Berlin and New York, 1972. MR 41 #7777.

14. M. D, Ivanovii, On the nature of continuity of solutions of linear parabolic equations

of the second order, Vestnik Moskov. Univ. Ser. I Mat. Meh. 21 (1966), no. 4, 31—41. (Russian)

MR 34 #4672.

15· S. N. Kruzkov, Estimates for the highest derivatives of solutions of elliptic and para-

bolic equations with continuous coefficients, Mat. Zametki 2 (1967), 549—560 = Math. Notes 2

(1967), 824-830. MR 36 #4123.

16. R. Z. Has minskil, Stability of systems of differential equations under random perturba-

tions of their parameters, "Nauka", Moscow, 1969; English transl., Transl. Math. Monographs,

Amer. Math. S o c , Providence, R. I. (to appear). MR 41 #3925.

17. V. E. Benes, Existence of optimal stochastic control laws, SIAM J. Control 9 (?971),

446-472. MR 45 #9771.

18. W. H. Fleming and M. Nisio, On the existence of optimal stochastic controls, J. Math.

Mech. 15 (1966), 777-794. MR 33 #7170.

19. W. M. Wonham, On the separation theorem of stochastic control, SIAM J. Control 6(1968),

312-326. MR 38 #5509.



REMOVING THE DRIFT OF A DIFFUSION PROCESS 149

20. M. A. Naimark, Normed rings, 2nd rev. ed., "Nauka", Moscow, 1968; English transl,
Normed algebras, Wolters-Noordhoff, Groningen, 1972.

21, A. K. Zvonkin, On sequentially controlled Markov processes, Mat. Sb. 86 (228) (1971),
611-621 = Math. USSR Sb. 15 (1971), 607-618. MR 45 #3113.

Translated by J. S. JOEL


