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Introduction

The subject of this paper is known in the mathematical literature under
the picturesque name of "duck-shooting". Ducks are certain singular
solutions of equations with a small parameter, which are studied in the
theory of relaxation oscillations. These solutions were first found for the
van der Pol equation, and their form resembled that of a flying duck. Duck
theory is, in the authors' opinion, the most striking application of the
techniques of non-standard analysis. Some results concerning ducks were
mentioned in the report by P. Cartier [ 1 ] . This paper is a supplement to
his article. Apart from presenting the theory of ducks we wanted to show
how the results of this theory can be interpreted in the language of classical
("standard") mathematics.

We should mention that all our results can be stated and proved without
the use of non-standard analysis (this is altogether true for applications of non-
standard analysis). However, this would have made all the statements more
cumbersome and all the proofs longer and intuitively less clear. It was not
by chance that ducks were discovered with the help of non-standard analysis
and in connection with it. We think that the language of non-standard analysis
will make it easy for a wide circle of mathematicians to become acquainted
with the theory of ducks and the theory of relaxation oscillations in general.

Advertising infinitesimal calculus, Leibniz wrote: "The difference from
the style of Archimedes lies only in expressions which in our method are
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more direct and more suitable for the art of invention". Quoting this
passage Lutz and Goze [3] noted that the same could be said about non-
standard analysis (which is, properly speaking, the present-day infinitesimal
calculus), replacing Archimedes by Bourbaki.

Of course, non-standard analysis does not offer as much economy of
thought as the differential and integral calculus did in their time. But even
the economy that it does provide can be essential in difficult problems of
the theory of singular perturbations of non-linear equations (as it turned out
in the problems discussed in this paper).

In what follows we sometimes use notions from [1] without saying so
specifically.

We start by constructing in § 1 the simplest version of non-standard
analysis. It is based on the construction described in §3 of [1] and also in
[2], but we do not introduce a scale of sets, extending the construction at
once to the entire category of sets. Here we have to sacrifice the general
principle of idealization (the direction theorem). However, the use of a
countable set Ω allows us to prove easily the existence of infinitely large
and infinitely small numbers, which is quite sufficient for the applications
considered in this paper.

In § 1 we give non-standard formulations of a number of important
theorems from the theory of ordinary differential equations (the existence
and uniqueness theorem, theorems about extension of solutions, the
Poincare-Bendixson theorem). We also give a standard interpretation of the
theorem on the existence of a large cycle for the van der Pol equation on
the Lienard plane.

In § 2 we give a definition of solution-ducks, that is, trajectories of a
rapid-slow field depending on an additional parameter a (apart from the
small parameter ε), which at first move along the attracting part of the slow
curve and then move to the repelling part and continue along it; along both
the attracting and repelling parts appreciable (that is, not infinitesimal)
intervals are covered. By means of a magnifying glass, representing an
infinitely large extension of the scale, we prove here that there are solution-
ducks in the case of a non-degenerate minimum point of the slow curve.
Here the simplest version of the "law of preservation of ducks" is established:
the fact that a solution-duck on the Lienard plane remains a duck under the
application of a magnifying glass, which corresponds in this case to a
transition to the phase plane. We also give a standard interpretation of our
results concerning ducks.

§3 contains various results specifying the behaviour of solution-ducks.
We prove that both the ducks themselves and the values of the parameter a
corresponding to them have complete asymptotic expansions in powers of
the small parameter ε. The coefficients of the expansion do not depend on
the choice of a duck. We obtain recurrence formulae for the coefficients of
the expansion and prove the existence of the expansion by means of
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a countable sequence of magnifying glasses. In addition, by considering
separately the case when all the coefficients in the asymptotic expansion of
the duck differ only by a numerical factor, we construct some examples of
ducks defined by explicit formulae.

In §3 we also describe an exponential microscope: a special change of
variables, which gives an exponentially large expansion (in relation to l/ε) of
the scale in the neighbourhood of a curve. Surprisingly well-adapted to the
study of ducks, this change of variables makes it possible to distinguish
between different ducks and the values of the parameter corresponding to
them. (For values of the parameter a this gives an exponentially small
interval with respect to ε, which is vividly expressed by the words "the life
of ducks is short".) By means of the exponential microscope we construct
an entry-exit function, which describes the correspondence between the
point at which a trajectory enters the halo of a solution-duck and the point
at which it leaves it. It is interesting that this function can be found
explicitly. Also, by means of an exponential microscope we give a second
proof of the existence of asymptotic expansions of ducks and values of the
parameter a. Next, in § 3 we describe certain specific objects connected with
ducks, such as tunnels, funnels, and showers.

§4 is devoted mainly to the study of duck-cycles, that is, ducks that are
periodic trajectories. First we prove a general theorem on the existence of
duck-cycles for the same configuration of the slow curve as in the van der Pol
equation (the minimum point may be degenerate). From this it follows also
that there are solution-ducks in the case of an arbitrary isolated minimum or
maximum point of the slow curve. The proof of the general theorem on the
existence of duck-cycles is based on the analysis of the successor function.
In addition we give another proof, based on the use of the entry-exit
function and suitable for the case of a non-degenerate minimum point. We
also describe the behaviour of the period of a large cycle and cycle-ducks,
discuss the question of the stability of cycle-ducks, and describe their
evolution in the case of the van der Pol equation. At the end of §4 we give
an outline of the description of the behaviour of duck-cycles for one
equation studied by M. Diener.

Lest we interrupt the exposition, in § § 1-4 we do not name authors of
individual results and we give hardly any references to the literature. All
this is done in §5, where we also give a short survey of the literature
available to us. We only point out that most of the results described here
are due to young mathematicians from Strasbourg, who later worked in
Mulhouse (France), and also in Tlemcen and Oran (Algeria). Their work was
inspired by one question formulated by G. Reeb in 1977. The enthusiasm
of the authors of the theory described here has influenced, in particular,
their terminology. We have tried to preserve their vivid style, since it
undoubtedly helps the comprehension of the results.
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§ 1 . Non-standard analysis and ordinary differential equations

1.1. The simplest non-standard extension of the real line.
Let Ω be an infinite countable set. Fixing a numbering of its points, we can
identify it with the set IM of all natural numbers. We consider on Ω the
filter °ii-0 consisting of all sets A C Ω. whose complement is finite. We
extend this to an ultrafilter "U and define on Ω a "probability measure" (in
the sense of [1]), associated with it, setting P(A) = 1 for A 6 °IL and
P{A) = 0 for A <£ <ϋ. We remark that if a subset A C Ω is finite, then
Ω \ A 6 <M, hence, A $= U so that P{A) = 0. In what follows the measure
Ρ is fixed and the words "almost everywhere" (or briefly a.e.) mean "almost
everywhere in measure P".

Let us introduce the set *R of "random real numbers", ( 1 ) which consists
of equivalence classes of maps Ω -> R, where two maps χ , χ" : Ω -*· R are
regarded as equivalent (we write χ ~ x") if χ '(ω) = χ"(ω) a.e. on Ω. If
χ Ε *R, then any of the maps χ : Ω -*• R defining χ is called a version of the
element x.

There is a natural embedding R C *R under which to every number a Ε R
there corresponds the class of the constant function on Ω (everywhere equal
to a).

It is easy to see that *R has the natural structure of an ordered field.
Namely, the algebraic operations (addition and multiplication) are introduced
by means of the corresponding operations over versions, carried out for each
ω Ε Ω. The order is introduced as follows: if x, y Ε *R, and x', y' are
versions of χ and j , t h e n Ω splits into the union of disjoint subsets:

Ω = Ω+ U Ωο U Ω_, where Ω+ = {ω: χ'(ω) >ir'(co)},

Ωο = {ω: χ' (ω) = y' (ω)}, Ω_ = {ω: χ' (ω) < y' (ω}.

Owing to the properties of Ρ one of the three subsets Ω+, Ω ο , and Ω_ has
measure 1, and the other two have measure 0. In accordance with this we
see that either a.e. χ'(ω) > γ\ω) (then we must put χ > y), or a.e.
χ'(ω) = y '(ω) (which means that χ = y), or a.e. χ '(ω) < y'(co) (in this case
we must put χ < y), which gives an order relation in *R. Similarly, we can
verify that if χ £ *R \ {0}, then there is an inverse element l/x.

Let us verify that *R\R is non-empty, that is, *R is actually a non-trivial
extension of R. Identifying Ω with N, we put ε(η) = 1/n (« = 1,2, ...)
and let ε be the corresponding equivalence class, that is, an element of *R.

(^Cartier [1] puts the asterisk on the right. We keep to the notation adopted by Davis [2].
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Since finite sets have measure 0 in Ω, it is clear that 0 < ε < ε0 for any ε0 > 0,
ε0 6 R. Therefore, ε £ * R \ R, which proves that *R \ R is non-empty.

The number ε ξ *R we have just constructed is infinitely small. Having
one such number, by means of algebraic operations we can construct
arbitrarily many other numbers belonging to *R \ R. For instance, if
a 6 R \ {0}, then αε is also infinitely small and differs from ε for α Φ I.
The number l/ε is infinitely large. Adding to a £ R all infinitesimals we
obtain the halo of a. The haloes of any two distinct numbers au a2 6 R do
not intersect.

The "asterisk" procedure of constructing a set of random elements can be
applied not only to R, but to any set X, and we obtain from it a set *X in
the same way as *R from R. There is a natural embedding X C *X, and if X
is infinite, then *X \ X is non-empty. In particular, there is a set *N, a
subset of *R, If a map f.X -*• Υ is given, then it generates a natural map
*f:*X~* *Y. Namely, if χ G *X and x' - χ '(ω) is a version of x, then *f(x)
must be put equal to the class of the map ω *->- f(x' (cu))from Ω to Υ (that
is, on versions the map */ is defined by applying / to each ω). We obtain a
functor from the category of sets to itself. It induces functors on many
natural subcategories, for example, the categories of groups, rings, fields,
partially ordered sets, and so on.

If A C X, then *A C *X. However, subsets of the form *A (which in [ 1 ]
are called standard) are not the only subsets of *X. An interesting class of
subsets can be obtained by applying the functor * to the set iP(X) of all
subsets of X. Elements of *ci? (X) can be interpreted as random subsets of
*X (such a subset can be thought of as a fibration over Ω, whose fibre over
each point ω is an ordinary subset of X). If a version ω >-*• Α'(ω)οί such a
random set A is given and χ is a random element of X with a version
χ = χ'(ω), then χ £ A means that χ '(ω) G Α'{ω) a.e. Thus, elements of
*&> (Χ) are interpreted as subsets of *X. (It is easy to verify that two
random subsets coincide if and only if they contain the same random
elements.) Thus, *&>(X) a &(*X). Elements of *^(X)are called internal
subsets of *X. All subsets of *X that are not internal are called external.

If Ζ = Χ χ Υ, where X and Υ are sets, then there is a canonical
isomorphism *Z = *X χ *Y under which the canonical projections of * Ζ to
*X and *Y are the maps *ργ and *p2 obtained by applying the functor * to
the canonical projections p1 and p2 of the direct product Ζ = Χ χ Υ to Χ
and Υ. Now if / : X -+ Υ is a map and Tf its graph, Tf C Χ χ Υ, then *Tf

turns out to be the same as the graph of the map *f:*X-* *Y. Thus, to
study the functor * it is sufficient to confine its application to sets,
identifying maps with their graphs (bearing into mind, of course, that graphs
are defined on sets with a fixed structure of a direct product). In addition,
the operation * can be applied not only to maps, but also to relations
between X and Υ (representing subsets of the direct product Χ χ Υ) and
turns them into relations between *X and *Y.
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Developing these remarks, we see that any mathematical structure
described in the framework of set theory allows us to apply the operation *.
Any statement ~il in the language of set theory, after applying the operation *,
turns into another statement*;';, also in the language of set theory. Of
course, the notion of statement here needs more precision. This is achieved
by a standard formalization of the language in the spirit of textbooks on
mathematical logic. Each mathematician intuitively knows what a
mathematical statement means. However, negligence can lead to
misunderstanding. It is worth mentioning that in a mathematical statement
(in its strict sense, as discussed here) all letters in it must be described in the
spirit of modern programming languages (for example, Pascal or Ada) with
the use of the membership sign £, though often such descriptions are only
implied. For example, the standard definition of the continuity of a given
function / : R -*• R at a given point x0 Ε R, written in the form

V E > 0 , 3 δ > 0 . Vx: | x - x o | < 6=> \f (x) - f (xo)\ < ε,

can lead to a misunderstanding if it is not made more precise in the
following way:

In the general statements discussed here we are allowed to use any sets,
functions, quantifiers, the implication sign =», parentheses, the signs =, £,
substitution of an argument in a function, and so on. Without going into
details we refer the reader to the book by Davis [2], where the necessary
formalization is made, apparently with the least possible purism, though
observing the usual requirements of mathematical rigour.

We point out that since all the sets and functions arising in the statements
we use must also be described (for a set A such a description must, as a rule,
have the form A £ff> (X), where X is some set already given), applying the
operation * we arrive at statements referring only to internal sets and
functions. In this context it is important to be able to distinguish between
internal sets and functions and external ones. We have something to say
about this later.

Now we can state the transfer principle.

Transfer principle. Any statement y in the language of set thoery is
equivalent to the corresponding statement *y, that is, they are true or false
simultaneously.

Here an expert in logic may ask: what does it mean to say "the
statement is true"? A mathematician can understand this intuitively (and
will not come to a contradiction!) or assume that truth means the existence
of a proof. (A proof of a statement 2/ can be transformed into a proof of
*3< and vice versa.)
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The idea of the proof of the transfer principle is given in [ 1 ]. The
essence of the matter consists in the fact that any statement can be written
in the form of an assertion about coincidence or non-coincidence of two
sets (for example, the statement Vx: χ ζ Χ =$~ χ ζ Υ can be written in the
form Χ \ Υ = 0 ) . The statement X = Y***X = *Y (here X and Υ are
sets), as well as the possibility of inserting * under the sign of any standard
operations on sets, can easily be verified directly.

Let us dwell on the question of internal sets. Let X and Υ be sets,
R C Χ χ Y. We consider the standard set *R C *X χ *Υ. Then for each
fixed J £ * F the set

A-={x: (χ, ϊ)ζ*Β}α*Χ

is an internal subset of *X. This follows easily from the transfer principle,
applied to the statement

Vp € Y, {*: * 6 X, (x,y)tR}

and can also be obtained by a direct construction of the corresponding
random set. (If y is given by a random element {ya}, then Ay is determined
by the random set Αω = {χ: χ ζ Χ, (χ, ya) £ R}.)

It turns out that the above construction of an internal set is general: any
internal subset of *X can be obtained in the same way. To prove this it
suffices to take Υ = ff'(X) and to define R as the inclusion relation Ε on
X X J'(X). Of course, this proof does not have any practical value, but
internal sets actually arising are always obtained by fixing parameters (in
general, non-standard) in standard sets. Similarly, internal functions are
obtained by fixing parameters (generally speaking, non-standard) in standard
functions. A typical example: f(x) = sin(co.x), where ω Ε *R.

The most important examples of external sets are the sets of infinitesimal
numbers, of finite numbers, of positive infinitely large numbers, and of
standard numbers. (Indeed, none of them has a least upper or greatest
lower bound, whereas by the transfer principle an internal set bounded
above or below ought to have a least upper or greatest lower bound,
respectively.) Additional examples are given by one-to-one images of the
above sets under internal mappings (see [8]).

1.2. Axioms.
From this point on we may entirely forget about the construction of the
functor *. Only the following properties of the operation *, which can be
considered as axioms, are important:

a) // X is a set, then *X is a set, and X C "X;
b) the transfer principle is valid;
c) *R\R^.0.
Let us give an example of the use of these axioms. From the transfer

principle it follows that *R is an ordered field. From this and from c) it is
easy to deduce that *R contains infinitely large and infinitely small numbers.
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We can do this by introducing some notions that are incidentally important
for what follows. An element χ G *R is called finite if there is a number
c G R such that —c <x < c. Each finite χ G *R has a shadow (or a
standard part, see [2]), that is, a number °x G R such that (x — °x) is
infinitely small. (Henceforth we write χ ~ y if χ and y are infinitely close,
that is, x—y is infinitely small; this will not produce any misunderstanding
with respect to the corresponding notation from §1.1, since the equivalence
in §1.1 will no longer be used.) This can be proved, for example, by
successively bisecting the interval [—c, c] (in R!) and applying the standard
theorem of analysis about nested intervals (after each division, χ falls into
one of the resulting intervals), or by defining °x directly by the formula
°x — inf{a: a ^ R , a > i } . Further, let χ ζ * R \ R . If χ is finite, then
ε = (χ — °x) is an infinitesimal, and l/ε is infinitely large. If χ is not finite,
then \x\> c for any standard c > 0, from which it follows that χ is
infinitely large and l/x is infinitely small.

The given axioms are sufficient for those applications of non-standard
analysis to differential equations that are discussed in this paper. However,
in a number of problems (for example, in applications to general topology)
it is necessary to replace axiom c) by a general idealization principle, which
guarantees the existence of ideal elements not only in R, but in much more
general objects. The general idealization principle can be made to hold by
choosing a-set Ω coarser than Ν with a suitable ultrafilter (see [1] or [2]).

1.3. The simplest theorems on ordinary differential equations.
Let us apply the transfer principle to the existence and uniqueness theorem
for ordinary differential equations. We consider the equation

(1.1) χ = \(x)

with the initial conditions

(1.2) x(t0) = *„·

Here x0 G G, where G is an open subset of R", χ — x(t) is a function of t
defined on the interval {a, b) C R and taking values in G, t0 G (a, b), and
V(x) is a vector field on G. A non-standard approach to the problem
(1.1)-(1.2) assumes the replacement of all objects t0, x0, a, b, G, V, and x(t)
by their non-standard analogues. We indicate the relevant refinements.
First, we must take t0, a, b G *R, x0 G *R". Next, we denote by JT(R") the
set of all open subsets of R". Then we assume thatG 6 *UT(Rn)]· It is
natural to call such G internal open subsets of *R". By the transfer
principle, in fact, G C *R" for any G 6 *[^"(R")1. Examples of internal open
subsets of *R" are any open balls (including those of infinitely small or
infinitely large radius). Such balls need not contain any standard points.

The interval (a, b) C *R, for any a, b G *R, a < b, consists of c G *R such
that a < c < b. By the transfer principle, it is an internal open subset of *R.
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Let a, b Ε R, a < b, and G 6 ^ ( R " ) . We denote by C((a, b), G) the set of
continuous functions on {a, b) with values in G. What is the non-standard
analogue of this space? The easiest way to conceive this is by means of the
transfer principle. We introduce the set

Π = {C((a, b), G): a, b € R, a < b, G 6 ^"(R")},

whose elements are the usual function spaces C((a, b), G) for all possible
standard a, b (a < b) and G. Let / be the set of all non-empty intervals
(a, b) C R, where —°° < a < b < +°°. Then there is an obvious map

((a, b), G) - * C((a, b), G).

We now introduce the set *Π and canonically extend the map C just
constructed to a map

*C: *I X

We denote the image of a pair ((a, b), G) under this map by *C((a, b), G).
Here a, b Ε *R, a < b, and G is any internal open set. By the transfer
principle, any element χ Ε *C((a, b), G) is a function χ : (a, b) -> G. By the
same principle, a necessary and sufficient condition for the internal function
χ : (a, b) -*• G to belong to *C((a, b), G) is obtained by repeating the
definition of continuity. (We have to use the metric on G obtained by the
canonical extension of the standard metric ρ : R" χ R" -> R+ to
*p : *R" χ *R" -> *R+ and repeat the usual (ε, 6)-definition of continuity,
assuming that ε, ό, and all the points occurring are arbitrary and non-
standard.) Elements of the space *C((a, b), G) will be called internal
continuous functions on (a, b) with values in G.

By analogy with *C((a, b), G) we define the space *Cl((a, b), G) of
internal continuously differentiable functions on (a, b) with values in G.

The derivative -ττ for any standard (a, b) Ε / and G 6 t5"(Rn)defines a map

±: Ο {(a, b). G)-vC((a, b), R").

By the transfer principle, for any (a, b) S */ and G ζ *[ l5
r(R")]we obtain a

map

*Ci((a, 6), G)-+*C((a, b), *R n ),

which for brevity we denote simply by •—-. (This cannot lead to a

contradiction, since for standard {a, b) and G the map (-rr) is an extension

of -τ-.) Instead of (ττ) x = J7X w e write x, which also cannot lead to a

misunderstanding.
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The space *C(G, *R") of internal continuous vector-valued functions on an
internal open set G (with values in *R") is defined in the same way as the
space *C((a, b), G) introduced above. We assume that V Ε *C(G, *R").
Now (1.1) makes sense for such V and for JC Ε *C\(a, b), G). A narrower
space of vector fields is the naturally defined space *C\G, *R").

We can now state an existence and uniqueness theorem for the solution of
the problem (1.1)-(1.2).

Theorem 1.1. Let G be an internal open subset of *R", V G *C\G, *R"),
t0 Ε *R, and xQ £ G. Then there is an ε > 0, ε ξ *R, such that the solution
x ξ_ *C1((t0 — ε, t0 -f ε), G) of (1.1) with the initial condition (1.2) exists
and is unique.

By an application of the transfer principle the proof follows immediately
from the standard existence and uniqueness theorem.

The number ε > 0 in Theorem 1.1 may be infinitely small, even if
G = *R". This happens, for instance, for the equation χ = χ2 with the
initial condition x(0) = B, where Β > 0 is infinitely large (here the solution
has the form x(t) = — (t — ί/B)-1 and is defined only for t < \/B), or for
the equation χ — Ax2 with infinitely larger > 0 and the initial condition
x(0) = 1 (the solution has the form x(t) — (1 — At)-1). However, all the
usual extension theorems remain valid. For example, if a solution x(t) is
not defined for all t > t0, then for any (including infinitely small) ε > 0,
ε £ *R, it has to be shifted for some t from the maximal interval on which
it is defined either into the set {x: p(x, * R " \ G) < ε} or the set
{x: | χ | >1/ε} . Another example: let G = *R", and suppose that for any
Τ > tQ, T G *R, there is an R > 0, R Ε *R, such that if the solution is
defined on [t0, tx], where tl < T, then \x(t)\ < R for^> t £ [tQ, tx~\; then
the solution x(t) is defined for all t > t0, t Ε *R. Proofs are easily obtained
by applying the transfer principle to a known standard fact. Similarly, a
linear equation (with continuous variable coefficients) has a solution on the
whole interval on which the coefficients are defined.

Let us give a non-standard statement of the Poincare-Bendixson theorem,
which we need in the following form: suppose that A' is a compact set in
R2 that does not contain positions of equilibrium of a field V Ε CX(R2, R2),
and that the solution x{t) of the problem (1.1)-(1.2) (for some t0 Ε R and
x0 Ε Κ) belongs to Κ for all t ^ t0; then Κ contains a periodic trajectory
of V. This makes it possible to apply the transfer principle along the same
lines as above and leads to the following result.

Theorem 1.2. Let ifC be the set of all compact sets in R2, Κ 6 *5Γ. // Κ
does not contain positions of equilibrium of a field V Ε C^R2, *R2) and if
there is a trajectory x(t) (a solution of (1.1)) defined for all t > t0, t Ε *R,
such that x(t) Ε Κ for all t > t0, then some periodic trajectory of V is
contained in K.
(1^Herei? > 0 may be infinitely large!
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For Κ we can take, for example, the closed ball {.r: χ 6 *R2, | χ | ^ R}
of any radius R G *R (in particular, R may be infinitely large).

1.4. The large cycle for the van der Pol equation.
The preceding arguments gave an almost tautological transfer of standard
theorems to the non-standard case. However, ultimately we should like to
be able to obtain standard theorems by non-standard methods. Here is the
simplest example of this situation in differential equations.

Consider the van der Pol equation

(1.3) εχ + (χ2 — ί)'χ + χ = 0

on the Lienard plane (x, y), where y — εχ + f(x), j(x) = x3/3 — x, so that
(1.3) is equivalent to the system

(1.4)
y=-x.

We consider the closed curve Γ C R2, described in §22 of [1], and having
the property that if ε > 0 is infinitely small, then any semi-trajectory
{(x(t), y(t)), t ^ t0} starting at any finite point of the non-standard plane
*R2 other than the origin enters the halo of Γ, beginning at some instant.
We fix a standard number δ > 0, δ G R, and denote by Γ<6> the
δ-neighbourhood of Γ in R2. If ε > 0 is infinitely small, then the unique
periodic solution of (1.4) is contained in *Γ<6>. Conversely, Γ is also
contained in the δ-neighbourhood of this periodic solution. In general, it is
convenient to introduce the usual distance between two compact sets in R 2 :

(1.5) p(-^n K2) =max {max ρ (ζ, K2), max ρ (ζ, Κ^}.

By the transfer principle, this distance is defined for any pair of closed
curves in *R2 determined by continuous periodic functions (that is, belonging
to *C\R, R2)). We have proved that the unique periodic solution Υε of (1.4)
has the property that

(1.6) p(v (*R), Γ ) < δ for any 6 > 0 , 6 € R.

In particular, if we fix δ > 0, δ G R, and take ε0 > 0 as infinitely small,
then we find that (1.6) holds for any ε G *R for which 0 < ε < ε0. By the
transfer principle we find that for the system (1.4) on the standard plane R2

the following theorem is true.

Theorem 1.3. There is an ε0 > 0 , ε0 6 R, such that for 0 < ε < eothe
system (1.4) has a unique periodic solution Υε : R -+ R2. For any δ > 0
there is an ε0 = εο(δ) > 0 such that if 0 < ε < ε0, then p(YE(R), Γ) < δ.

Thus, as Ε-*- -j-0, the periodic solution Υε of (1.4) converges to Γ in the
metric (1.5). By similar arguments it is easy to see that the smallest periods
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Τε of periodic solutions converge as ε ->- + 0 to a number To, which is the
shadow of the smallest period of such a solution for infinitely small ε > 0.
(This shadow does not depend on ε: it is easy to verify that To= 3-log 4.)

§2. Existence of solution-ducks

2.1. Definition of solution-ducks.
We consider the system of differential equations

i = ε"1 ( i f-/(*)),
(2.1)

I y = a — χ.

Here (and almost everywhere in what follows) we treat it on the plane *R2

and assume that a E *R, ε Ε *R, ε > 0, ε is infinitely small, and / is a
standard function of class C°°. (More precisely, it is a function of class
C°°(R, R), extended to a map *R -»· *R). However, at the end of this section
we give a standard interpretation of the results obtained, and then the system
(2.1) is treated on R2, and we assume that a E R and ε Ε R, where ε > 0 is
a small parameter.

Fora = 0 and fix) — x3/3 — x, the system (2.1) goes over to the
van der Pol equation on the Lienard plane. This is why (2.1) is often called
the Lienard system, and the (x, .y)-plane the Lienard plane. The class of
equations of the form (2.1) is convenient, because on the one hand, it
contains many interesting examples and on the other hand, it is simple
enough from the technical point of view.

In (2.1) the variable y is slow; this means that y takes finite values at all
finite points of the plane. The variable χ is rapid, that is, χ takes infinitely
large values at some finite points of the plane. For systems on the plane
with one slow and one rapid variable, we define the slow curve as the set of
points at which the time-derivative of the rapid variable vanishes: for the
system (2.1) this gives χ = 0, that is, y = f(x). Thus, in this case the slow
curve is the graph of f(x). (For many systems occurring later the slow curve
is not a standard, but an internal set; in this situation some authors use a
different terminology, calling the slow curve the shadow of the given set.)

We define the ε-galaxy of a plane set A as the set of points whose
distance d from A is such that d/ε is finite. It is evident that the ε-galaxy of
the slow curve is the set of points (x, y) such that ε-χ(ι/ — f(x)) is finite.
Consequently, outside this ε-galaxy χ is infinitely large, that is, the vector
field corresponding to the system (2.1) is almost horizontal; above the
graph f(x) it is directed to the right, and below the graph to the left (see
Fig. 2.1; the double arrows here and in subsequent figures show rapid
motion, that is, motion with infinitely large velocity). It is obvious that the
parts of the graph where fix) increases are attracting (that is, locally in the
neighbourhood of these parts the rapid movement is directed towards them),
and the parts of the graph where fix) is decreasing are repelling (that is, in
their neighbourhood the rapid motion is directed away from them).
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In this paper we are mainly interested in trajectories that move from the
attracting part of the slow curve to the repelling part. We consider the
extremum point x 0 that separates these parts; for definiteness, let x0 be a
minimum (Fig. 2.1).

Fig. 2.1.

We consider the whole motion in the neighbourhood of x0, an isolated
minimum point of f. Then for certain standard cx < x0 and c2 > x0 the
function f(x) is non-increasing in (cx, x0) and non-decreasing in (x0, c2)
(Fig. 2.1). Throughout the rest of this section, without saying so each time,
we consider the system (2.1) and the corresponding motions only in the strip
{(x, y): cx < χ < c 2 } . Moreover, we assume tha t/ ' (χ) Φ 0 for χ G (c1 ; c2),
χ Φ x0, so that f'\x) < 0 for χ Ε (clt x0) and f(x) > 0 for χ G (x0, c2).

We now define solution-ducks for a system of the type (2.1).

Definition 2.1. A solution (x(t), y(t)) of (2.1) is called a solution-duck, or
simply a duck, if there are standard t\ < t0 < t2 such that °[χ(ί0)] = *o> f° r

t G {tit tQ) the segment of the trajectory (x(t), y(t)) is infinitely close to the
attracting part and for t G (t0, t2) to the repelling part of the slow curve.
(The attracting and repelling pieces which the trajectory covers are not
infinitely small.)

With abus de language we sometimes define a duck as not the whole
trajectory (x(/), y(t)), but only the segment of it that is infinitely close to
the slow curve. In Cartier's paper [1] ducks are only those solution-ducks
that are at the same time cycles, that is, solutions periodic with respect to t.
We study duck-cycles later, in §4. As we shall see, many properties of
duck-cycles can be deduced from the fact that they are simply solution-ducks.

Our definition depends on the choice of the point x 0; however, we do
not explicitly mention this choice each time, when it is clear from the
context. In particular, for the time being we consider ducks in the strip
{(x. y): c1 < χ <z c2), where (c1( c2) is the interval described above in which

/ has exactly one (isolated) extremum point, the minimum point x0. Instead
of a minimum point we can, of course, consider a maximum point. In this
case, the definition of a solution-duck is the same (though now, according to
the definition, the shadow of this solution moves through the maximum
point from left to right, whereas at a minimum point its shadow moves from
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right to left). However, this case is easily reduced to the case of a minimum
point by changing y to —y. On the other hand, "false ducks", which move
from the unstable branch of the slow curve to the stable one, cannot be
obtained from ducks by reversing time, as one might think at first glance,
since in this case the attracting parts of the slow curve become repelling, and
vice versa.

We give a simple necessary condition for the existence of a duck close to
the minimum point x0 of f{x).

Proposition 2.1. If there is a duck of the system (2.1) close to the minimum
point x0, then a ~ x0.

Proof. Suppose, on the contrary, that a is not infinitely close to x0, for
example, that a < x0- But from the second equation (2.1) it follows that
y < 0 for χ > a, that is, for χ > a the motion is such that y decreases as t
increases. Thus, no solution (x(t), y(t)) can arise to the left of the point x0

along*1* the slow curve. (This is intuitively obvious from the direction of
the field on the slow curve itself, as shown in Fig. 2.2.) In particular, in
this situation a solution-duck is not possible. The case a > x0 is similar. •

Fig. 2.2.

2.2. Existence of ducks in the case of a non-degenerate extremum.
To avoid misunderstanding, we remark that the existence of solutions of
(2.1) that move for some time along the repelling part of the slow curve is a
trivial fact, since if we change from t to —t the repelling part becomes the
attracting one. However, what is not trivial is the existence of solutions that
first move along the attracting part and then along the repelling part, that is,
ducks. We prove here the following theorem, which is due to M. Diener [34].

Theorem 2.1. Suppose that a function f has a non-degenerate {Morse)
minimum at x0, that is, f'(x0) — 0 and f"(x0) > 0. Then there are values of
the parameter a for which in the neighbourhood of x0 there are solution-
ducks for (2.1). What is more, if [cx, c2] is a standard finite interval of the
axis R such that x0 € {cu c2) and f'(x) Φ 0 for all χ Ε [c1( c2], χ Φ χ0, then
there is a value a and a duck corresponding to it whose shadow is the same
as the graph of f{x) for all χ G [cu c2] •

^)"Along" means infinitely close to.
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The existence of ducks for degenerate extremum points will be proved
in §4.

Proof of Theorem 2.1. Let 7 be a trajectory starting from a finite point
(x, y) in the "zone of attraction" of the attracting branch of the slow curve
(Fig. 2.3, a and b). This means that, firstly, the point (3c, y) lies outside the
ε-galaxy of the repelling branch of the slow curve, and secondly, either the
point (x, y) already lies in the ε-galaxy of the attracting branch of the slow
curve, or it lies in the zone of almost horizontal motion, which by changing
it to a horizontal one leads to some point of the slow curve whose abscissa .
is denoted by x2, so that this point has the coordinates (x2, y).

Τ <x>y)

Fig. 2.3.

We claim that 7 enters the ε-galaxy of the slow curve in the halo of the
point (x2, y). This means that, firstly, there are points of the trajectory 7
that belong to the intersection of the halo of (x2, y) with the ε-galaxy of
the slow curve, and secondly, for any point of the trajectory 7 in the
ε-galaxy of the slow curve there is a point of this trajectory preceding it in
the halo of (x2, y). The terminology just introduced must be used with
care, since the ε-galaxy is not an internal set and there is no "first" point
where the trajectory enters the ε-galaxy. However, for simplicity and brevity
we use this terminology later, having in mind the precise sense just mentioned
(or a similar sense, which the reader can easily make precise himself).

To prove the proposition stated above we need a transition to the phase
plane, which in the given case coincides with an important device, which
plays an essential role in what follows, namely, a magnifying glass or a
stretch of the scale with an infinitely large coefficient. We go over to the
plane of the variables (x, v), where ν = χ = ε- 1 ^ — /(*)). Then along a
trajectory of the system (2.1) we have

r (x) v],

so that (2.1) on the phase plane (χ, υ) takes the form

(2.2) x=v,
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Finite points of the phase plane correspond to points of the Lienard plane
that belong to the ε-galaxy of the curve y = fix'). Now (2.2) is again an
equation of slow-rapid type (but this time the rapid motion is vertical, since
the rapid variable is υ). The slow curve on the phase plane is given by the
equation

(2.3) a-x — f(x)v = 0;

for α Φ χ0 it is the graph of the function

(2.4) υ a~T

and for a = x 0 it is the union of the vertical line χ = x0 and the smooth
curve y = g(x), where g(x) = -(x - xo)/f'(x), and at xQ the function g(x) is
defined by continuity as -l//"(x 0) (the smoothness of g(x) follows from the
non-singularity of the minimum point x0). The vector field corresponding to
the system (2.2) is illustrated in Fig. 2.4 on the Lienard plane, the attracting
branch of the slow curve is given by χ > x0, and the repelling branch by χ < x0.

0<Xn

Fig. 2.4.

As we have already mentioned, the trajectory y falls into the ε-galaxy of
the curve y - f(x) on the Lienard plane; this means that we can observe it
in the finite part (or the so-called "principal galaxy", see [1], §14) of the
phase plane. A segment on the phase plane coming "from infinity" appears
to us as an almost vertical ray (see the first graph in Fig. 2.4). The
statement that on the Li6nard plane y enters the ε-galaxy of f(x) in the halo
of (x2, y) is equivalent to the following lemma.

Lemma 2.1. Points of an almost vertical segment of the trajectory y on the
phase plane have an abscissa infinitely close to x2, where x2 is the abscissa of
the point of intersection of the line y -y and the attracting branch of the
curve y — f(x) on the Lienard plane.
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Proof. For definiteness we assume that the almost vertical portion of the
trajectory is situated above the slow curve on the phase plane. (The
opposite case is considered in exactly the same way.) Then it is the graph
of some function χ = φ(ν), which is automatically defined for all finite
ν > v0 for some i»0. We extend the domain of definition of this function so
that it becomes internal. Namely, the trajectory 7 = (x(t), v(t)) can be
written in the form χ = φ(υ) wherever v(t) Φ 0. The set {t: v(t) =^=0} is an
internal open set. We take its maximal interval / containing some t
corresponding to the vertical part of 7. Then the set of points
{(x(t), v(t)), t £ /} has the form of the graph {(χ, ν): χ = φ(ι>)}, where φ is
an internal function. In particular, its domain of definition (which consists
of all points of the form v(t), where t G /) is also an internal set (and even
an interval). Since this domain of definition contains all finite υ > v0 for
some v0, it contains a whole interval [i>0, coo] for some infinitely large ω 0 .
The internal function ψ (υ) — φ(υ)—φ(ν0) is defined on the same interval, and
ψ(ν) takes infinitely small values for all finite ν > v0- According to
Robinson's lemma ([1], §11) there is an infinitely large ω χ such that
ψ (υ) ~ 0 for all ν £ [v0, coj , that is, φ(ν) ~ φ(ν0) for these v. The point of
7 with the coordinate υ = ωλ on the Lienard plane lies outside the ε-galaxy
of f{x), hence on the almost horizontal part of 7, that is, at this point
y ~ y. As i; varies from ω, to v0 the coordinate χ varies infinitesimally.
Since the slow curve on the Lienard plane has a finite non-zero slope, the
coordinate y also varies infinitesimally. Thus, the point of 7 corresponding
to υ = v0 on the Lienard plane is also infinitely close to the line y = y. •

Remark. One might be surprised that we have made such an effort to prove
such an obvious statement. However, let us consider the system

(2.5)

Its slow curve is the line χ — 0 and its trajectories are given by the equations
y = C -τ ε/ζ. Outside the ε-galaxy of the slow curve these trajectories are
almost horizontal, that is, infinitely close to the line y = C. However, any
point of the trajectory that lies in the ε-galaxy of the slow curve is at an
appreciable distance from this line. The difference between the systems
(2.1) and (2.5) is that if we stretch the ε-galaxy of the slow curve by a
factor ε"1, we do not obtain on the new plane a field of slow-rapid type.

Repeating arguments similar to the proof of Lemma 2.1 for the phase
plane, we can verify that the trajectory 7 enters the ε-galaxy of the slow
curve on the phase plane in the halo of the point with the abscissa x2.

All we have said up to now is true not only for ducks, but for any
trajectory that enters the halo of the slow curve y = f{x) not in the halo of
the extremum point. However, a duck can not only enter but also leave the
halo of the slow curve, and not even in the halo of the extremum. It is
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easy to see that the propositions stated earlier for the points of entry are
also true for the coordinates of the points of "leaving" the ε-galaxy of the
slow curve: it is sufficient to replace t by —t, then the repelling branch of
f{x) becomes the attracting one, and the exit part becomes the entry part,
which allows us to repeat all the preceding arguments. We have thus proved
the following proposition.

Proposition 2.2. The trajectory enters the ε-galaxy of the slow curve on the
Lienard plane in the halo of the point with the abscissa x2 €= R, x2 ^ XQ, if
and only if it enters the ε-galaxy of the slow curve on the phase plane in the
halo of the point with the same abscissa x2. The trajectory leaves the
t-galaxy of the slow curve on the Lienard plane in the halo of the point
with the abscissa xx € R, xl φ χ0, if and only if it leaves the ε-galaxy of the
slow curve on the phase plane in the halo of the point with the same
abscissa xx.

Let 7 be a trajectory-duck with abscissas of the points of entry and exit
x2 and xu respectively. What does this trajectory look like on the phase
plane? To answer this question we must first of all recall that a ~ x0

(Proposition 2.1). From this it follows that the slow curve on the phase
plane is infinitely close to the union of the line χ — x0 and the curve
ν = g(x).

Lemma 2.2 (about the absence of excursions). In the interval between the
points x2 and Xj the trajectory γ lies entirely in the halo of the curve
ν = g(x).

Proof. We know that at the beginning γ enters the halo of the graph g(x)
and at the end it leaves it. We assume that on the way γ deviates appreciably
from g(x), for example, upwards. However, this contradicts the topology of
solutions of the differential equation in question.

7
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For, upward motion is possible only to the left of the slow curve, whereas
the returning downward motion is possible only to the right (see Fig. 2.5, in
which the halo of g(x) is shown by a dotted line). Thus, for 7 to be able to
leave the halo of g(x) near the point xx after it has already left it once (for
example, near the point x0) it is necessary that γ has a loop with a self-
intersection (a double point). The remaining cases of the impossible
behaviour of 7 are treated similarly. •

Corollary 2.1. The segment of the trajectory-duck γ on the Lienard plane
situated between the entry point x2 and the exit point χγ lies entirely in the
ε-galaxy of the curve y = fix).

Proof. This follows from the fact that on the phase plane the segment of 7
between x2 and xx contains only finite points. •

For degenerate extremum points the analogous statement is false: a
trajectory-duck that stays in the halo of f(x) nevertheless leaves the ε-galaxy
of f(x) near the point x0 (and on the phase plane it leaves the principal
galaxy).

Corollary 2.2. The segment of the trajectory-duck 7 on the Lienard plane
and on the phase plane between the entry point x2 and the exit point χ χ is
in the form of the graph of a smooth function of x.

Proof. On the phase plane this statement is a direct consequence of
Lemma 2.2, since by this lemma the whole relevant part of the trajectory-
duck lies in the domain υ < 0, hence, χ < 0 on it. But then χ < 0 also on
the Lienard plane. •

The trajectory 7 in question first moves on the phase plane along the
attracting part and then along the repelling part of the slow curve, that is, it
has the same property as a duck on the Lienard plane. Although, formally
speaking, Definition 2.1 of a duck refers only to equations of the form
(2.1), it can be applied without any modification to (2.2) on the phase
plane. Then Proposition 2.2 combined with Lemma 2.2 has a simpler
formulation.

Proposition 2.3 (law of preservation of ducks). The trajectory 7 is a duck
on the Lienard plane if and only if it is one on the phase plane. The
shadow of 7 on the Lienard plane contains a segment of the graph of f(x)
for χ £ [χϊ, χ2] if and only if its shadow on the phase plane contains a
segment of the graph of g(x) for χ £ [x1? x2].

In accordance with this proposition we can study the question of the
existence or non-existence of ducks directly on the phase plane. We need
the following important lemma, which we first state in the standard version.

Lemma 2.3 (about shooting). Suppose we are given:
1) a connected and simply-connected domain D in R2 with boundary dD

of class C1, that is, having a continuously varying tangent;
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2) a family of vector fields va(y), defined in a fixed neighbourhood ^i of
the closure D of D, which are smooth (of class C°°) and depend smoothly on
the parameter^ a E [alt a2]. Suppose also that

3) va does not have singular points in °ll;
4) va is transversal to dD everywhere except for two points 7\(a) and

T2(a).
We denote by E(a) the interval of entry of a field va, the subset^ of dD

consisting of points y £ dD such that va(y) is directed inside D, and by S(a)
the interval of exit (the complement to E(a) in dD\{T1(a). T2(a)}).

Suppose that a point y0 Ε dD is such that y0 £ f) E(a). that is, y0

belongs to all intervals of entry. We denote by ζ (a) the point of exit on dD
of the trajectory of va starting at yQ. Then ζ (a) £ S(a) and the function
a*-+z(a) is continuous; in particular, it takes all intermediate values, that is,
its range is a closed subinterval of dD.

Proof. It is easy to see that from the assumptions we have made it follows
that the trajectory of va starting at T-Sfl) or T2(a) (at the instant t = 0) for
t £ (-δ, δ) and for sufficiently small δ > 0 has only one point in common
with D (Fig. 2.6).

Κ Τ, (α)

Ε π)

Fig. 2.6. Fig. 2.7.

Therefore, 7\(α) and T2(a) cannot be exit points for the trajectory starting
at y0, hence, z(a) £ S(a). Now continuity of z(a) follows immediately from
the theorem on the smooth dependence of the solution on parameters and
from the implicit function theorem. •

We need a non-standard version of Lemma 2.3, which is obtained from it
by applying the transfer principle. We do not state it explicitly, but only
indicate the necessary modifications.

1°. We have to take D 6 *3J, where £Γ· is the set of all bounded domains
with boundary of class C1 in R2. In particular, D C *R2 (and D is an
internal subset of *R2). The shadow of D ξ. *3 does not have to be a
bounded domain with smooth boundary: for example, this shadow can

(1)This means that (ζ, α).-* va(x) is infinitely differentiable as a function from
Ή Χ [au a2] to R2.

* ^This set is diffeomorphic to an open interval of R.
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coincide with the whole plane R2 (for D we can take a disc of infinitely large
radius) or with a rectangle in R2 (if D itself is obtained by an infinitely small
rounding of the corners of this rectangle).

2°. The maps of going over to the closure and taking the boundary are
extended from SD to *D, so that D and dD are defined for D 6 *3>. Here,
dD G *Γ, where Γ is the set of all closed curves without self-intersection of
class C1 in R2; D = D U dD.

3°. The neighbourhood 1L of D can be defined, for example, as an
element of *S, representing a set containing D.

4°. Vector fields must be taken from a function space that is an element
of the set obtained by application of the functor * to the corresponding set
of standard function spaces (compare § 1.3). In particular, the parameters ax

and a2 may be non-standard.
5°. By the transfer principle, at each point y £ dD (for D ζ *3J ) there is

a tangent and a vector normal to the boundary; this allows us to define
transversality and intervals of entry and exit just as in the standard case.
Transversality in the non-standard sense means that the vector field makes a
non-zero angle with a tangent to the boundary, but this angle may be
infinitely small!

6°. The conclusion of the lemma remains the same, but continuity of
z(a) must also be understood in the sense of belonging to a non-standard
function space obtained by analogy with the arguments of §1.3. However,
by the transfer principle all non-standard intermediate values of z(a) are
assumed in the usual sense.

Now we are ready to turn to the proof of the existence of ducks.

Proof of Theorem 2.1. We want to apply Lemma 2.1 (in the non-standard
version) and for this purpose we consider in the phase plane a domain
D 6 *<3?that has the form of a rectangle (cv c2) x {dlt d2) with corners
rounded by means of arcs of infinitely small radius (Fig. 2.7).

We take c1 and c2 as in the condition of the theorem, and choose άγ and d2

so that the following conditions are satisfied:
a) dx, d2 are standard and d1 < d2 < 0;
b) the numbers \dt\ and \/\d2\ are sufficiently large (this condition will be

made more precise later).
In particular, we assume that dx < min g(x) and d2 > max g(x), so

that the part of the graph of g(x) above [clr c2] belongs entirely to the
rectangle [cl, c2] χ [dit d2] and intersects its boundary in the vertical sides
χ — cl and χ = c2.

Let us verify that D satisfies the conditions of the non-standard version of
Lemma 2.3 with respect to the vector field (2.2). The unique position of
equilibrium (a, 0) of (2.2) does not belong to D. Transversality of (2.2)
with respect to the vertical parts of dD is evident from the fact that υ < 0
in D. (In this case the shadow of the field in many places is vertical and is
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not transversal to the shadow of bD\) An elementary consideration of the
field shows that (2.2) is transversal to dD also on the rounded parts. Points
of non-transversality, therefore, lie on the horizontal parts, namely, where
a — x—f\x)v — 0, that is, on the slow curve.

Now we want to choose dl and d2 so that the slow curve has precisely one
point of intersection with each of the segments I, ={(x, dj): c1 ̂  χ ^ c2}
(/ = 1 or 2). Let F,(x) = χ-xo+f'(x)d/- (/ = 1 or 2). Then the points of
intersection of the slow curve with /,· have the form (x, dj), where χ is a
solution of the equation Ff(x) - a — x0 in the segment [cu c 2 ] . We recall
that it is sufficient to consider the case when a is sufficiently closed to x0.
Since F;'(x) = 1 +f"{x)dj, we see that if a standard interval (c1 ; ~c2) is chosen
so that f"(x) > 0 for χ G [cu c2], then for sufficiently large IrfJ and \/\d2\

F[ (x) < 0 and F'2 (x) > 0 for χ £ [7,, c2].

Since f"(x0) > 0, the interval (c l f ~c2) can be chosen so that x0 G (cx, ~c2) and
[ci, ~c-i\ c [ci, c 2 ]. Now we can arrange that Fj and F 2 do not vanish en
[c1( ? J and [?2.

 C2] by a further increase of IciJ and l/\d2\. (This is
possible, because by our assumption/'(x) < 0 on [c1, c\] and f'(x) > 0 on
[c2, c2].) But then for sufficiently small a — x0 the equation Fj(x) ~ a~x0

does not have solutions on [cx, c^] and \c2, c2] (even in *R), since F ;(x), as
a standard continuous function, is non-zero on these intervals. At the same
time, since Fj(x0) = 0 and Fj(x) Φ 0 on [c1( C2], the equation F7(x) = a~x0

has one and only one solution (by the implicit function theorem) in (clt ~c2),
again on condition that a~x0 is sufficiently small.

Thus, the domain D described above satisfies the conditions of the non-
standard version of Lemma 2.3 if we take a € [x0— ζ χ + δ ] , where δ is a
sufficiently small standard positive number. We consider the disposition of
the intervals of entry and exit. It is clear that the whole left-hand side of
the boundary of the "rectangle" D (that is, the left vertical part with the
roundings adjacent to it) belongs to the interval of exit S(a) of the field
(2.2) for any a sufficiently close to x0. At the same time, the whole right-
hand side of the boundary of D belongs entirely to the interval of entry E(a).

Suppose now that y0 = (c2, g(c2)) G dD, so that y0 belongs to the
intersection of all intervals of entry E{a) for a G [x 0 - δ, χ + δ ] . Applying
the non-standard version of Lemma 2.3 we see that the exit point z(a) of
the trajectory of (2.2) starting at y0 depends continuously on
a G [x0— δ, χ ο + δ ] . But from an examination of the directions of the field
(Fig. 2.8) it is clear that if a < x0 (for example, a = χο-δ), then the exit
point z(a) must be situated on the lower side of the boundary of D (its
shadow must coincide with the point of intersection of the shadow of the

e words and their synonym "a~x0 is sufficiently small" here and later are
understood in the following way: I I E ' R and \α-χο\ < δ for some standard sufficiently
small δ > 0.
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slow curve and the horizontal line ν = di), and if a > xo(for example,
a = xo+ δ), then z(a) is situated on the upper side of dD (Fig. 2.8).

c, a.x!i -2

a) case a <

Fig. 2.8.

By the non-standard version of Lemma 2.3 we find that there is a
parameter value a £ [x0—δ, ·χ ο +δ] such that z(a) = (c1( g(Ci))· (Instead of
this we can, of course, take any other point on the left-hand side of dD.)
But then it is clear that the corresponding solution is a duck, whose shadow
contains all points (x, g(x)) for χ G [clf c2], as required. This completes the
proof of Theorem 2.1. •

Remark. It stands to reason that solution-ducks are far from being unique.
This follows clearly and simply from the theorem about the continuous
dependence of a solution on the parameters and initial conditions: if we
change the parameter a and the initial condition of the solution-duck by a
sufficiently small amount (even in the non-standard sense), then it remains a
duck. Quite different is the case of duck-cycles, which may be unique (for
a fixed value of a) and stable (as is the case, for example, in the van der Pol
equation; see §4 later).

2.3. Standard interpretation.
We now give a standard interpretation of the results just proved (in particular,
Theorem 2.1 about the existence of ducks). This is done by analogy with
the standard interpretation of the theorem on the existence of a large cycle
for the van der Pol equation (see Theorem 1.3).

We regard (2.1) as a standard equation in R2 with a small parameter
ε > 0 , ε ζ R. We also assume that the parameter α is a standard real
number. We denote by (2.1)ε,α the equation (2.1) with the indicated values
of the parameters ε and a. As above, let x0 be a non-degenerate minimum
point of f{x).

Definition 2.2. We define a standard duck of the system (2.1) as a sequence
(*n(t), yn(0) (η = 1,2, ...) consisting of solutions of the equations (2.1)ε ,α

such that:
a) εη > 0 for all n; lira εη = 0;

Tl-KX

b) Iim an = a0 exists;
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c) the solution (xn(t), yn(t)) is defined for t £ (cn, dn) and there are two
closed disjoint subintervals [c'n d'n] and [c'n, d'^] of (cn, dn), of which the
first lies to the left of the second and the restriction of this solution to
[c'n, d'n] (respectively, [c'n, d'n]) defines a curve on the Lienard plane that
converges^1) as η -* «> to the portion of the slow curve y = f(x) above a non-
trivial interval of the semi-axis {χ: χ > x0} (respectively, {χ: χ < x0}).

Let us establish a correspondence between ducks in the sense of
Definition 2.1 and standard ducks in the sense of Definition 2.2. If
(χη(0, yn(t)) is a standard duck, then taking an infinitely large natural
number n0 and putting (x(t), y(t)) — (xnr,(t), #„„(*)) we obtain the duck of
(2.1) corresponding to the parameter values ε = εηο and a = an<>. Since
°(flTic)

 = co· from Proposition 2.1 it is clear that a necessary condition for
the existence of a standard duck is a0 = x0.

Conversely, let (x(t), y(t)) be a duck of (2.1). We denote by ΓΊ and Γ2

the two compact connected pieces of the attracting and repelling parts of
the slow curve, respectively, where Γ = Γ\ U Γ2 belongs to the shadow of
the duck in question. Choosing an arbitrary standard δ > 0 we can make
the following assertion:

There are numbers ε >0,<; e R, and a solution (x(t), y(t)) of the system
(2.1)ε asuch that ε < δ, \α-χο\ < δ, and the compact set Γ lies in the
δ-neighbourhood of the curve determined by the solution (x(t), yit)) on the
Lienard plane.

This is true in the non-standard sense, that is, for equations in *R2 (for
(x(t), y{t)) we can take the duck itself). But then by the transfer principle
it is true also in the standard sense. Now taking δ = \jn and denoting the
resulting solutions by (xn(t), yn{t)) we obtain a standard duck in the sense
of Definition 2.2.

Thus, the existence of standard and non-standard ducks occurs
simultaneously. An obvious refinement of these arguments shows that the
following result is true.

Theorem 2.2. Under the conditions of Theorem 2.1 the family of standard
equations (2.1) has standard ducks. If (c1 ; c2) is a standard finite interval of
R such that x0 £ (clr c2) and f'(x) Φ 0 for χ £ [cu c2], χ Φ x0, then there is
a standard duck such that for any piece of the slow curve above a closed
subinterval of [c1( c2] that does not contain the point x0 there are parts of
the curves (xn(t), yn(t)) forming the relevant standard duck that converge
uniformly to this piece.

we can understand convergence, for example, in the sense of the metric (1.5).
However, as is easy to verify, we may assume that the restrictions of the solution
(xn(t),yn(f)) to the subintervals [c'n, d'n] and [c'n, d'n] for large η have the form of
graphs y = gn(x), and then convergence can be understood as uniform convergence of
gn{x) to f{x) as η -+ °°.
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Although in essence Definition 2.1 and Theorem 2.1 are equivalent to
Definition 2.2 and Theorem 2.2, the non-standard definition and theorem
look considerably more simple, clear, and elegant than their standard
analogues. It is not surprising that the very formulation of the duck
problem comes from a paper of Reeb in connection with non-standard
analysis (see his letter, reproduced in [19]). A comparison of the standard
and non-standard versions of the statements shows that the language of non-
standard analysis is natural in problems of the type under consideration.

Remark. The reader may have noticed that certain statements of non-
standard analysis allow for an "automatic" translation into the standard
language with the help of the transfer principle, while others need some
additional effort to work out a "standard interpretation". Statements of the
first type are called internal and those of the second type external. The
formal difference between them is described in a paper by Nelson [4] ;
there a purely syntactic algorithm for constructing a standard interpretation
of any external statement is given. Note that the majority of theorems
about ducks are external.

§3. Approximations of ducks

The solution-ducks constructed in §2 have remarkable qualities from the
point of view of the construction of approximate solutions. We can obtain
in explicit form not only asymptotic expansions of solution-ducks and the
corresponding parameter values α in powers of ε (§3.1), but even exponential
terms of the expansion (§§3.3, 3.4). However, the role of the results
obtained in this section is far from being exhausted by constructing
approximate solutions. Thus, the explicit form of the asymptotic expansion
in powers of ε allows us to construct a number of examples in which the
solution-ducks themselves are also in the explicit form (§3.2). The
construction of exponential terms of the expansion allows us to construct
an entry-exit function (§3.3), which is the most important instrument for
the studying the qualitative behaviour of solutions (actually used in §4).
Also, the discovery of exponential terms is very rare in the theory of
asymptotic expansions and therefore deserves special attention.

3.1. Asymptotic expansion of solution-ducks and the parameter a in powers
of ε.
To begin with we indicate the meaning of asymptotic expansion in powers
of an infinitely small e G *R, which appears later. We say that a number
a G *R admits an asymptotic expansion in powers of ε

(3.1) a ~ a0 + a^ + α,ε2 + . . . -f αηε
η + . . .,

if ak G R (k = 0, 1, ...) (that is, the coefficients ak are standard) and for
any standard integer η > 0 the number a can be written in the form

(3.2) a = a0 -f αχε + α2ε
2 + . . . -f αηε

η + η π ε η ,
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where ηη ~ 0, that is, ηη is infinitely small.(1) It can be proved in the usual
way that all the coefficients ak in (3.1) are uniquely determined. For
example, it is clear that a0 = °a, ax = °[ε-1(α — α0)] and so on.

We say that an internal function y{x), defined on the closed interval
[c1( c2] C *R with standard ends c t and c2, admits an asymptotic expansion
in powers of ε on this interval:

(3-3) y ~ /„ + ε/1 -f ε2/2 + . . . + ε"/
η

if/ij/2» ·•· a r e standard functions on [c1: c2] and for any standard integer
η > 0 the function y can be written in the form

(3.4) y(x) = fo(x) + e/,(x) + e2f2(x) + . . . + e»/n(x) + ε"ηη(ζ),

where ηη(χ) ~ 0 for any χ Ε [c1; c 2 ] . Clearly, all the functions fk(x) are
uniquely determined by this expansion. Note that ηη(χ) is an internal
function, so that by Robinson's principle (see [1], § 10) there is an
infinitely small"?} > 0 such that \ηη(χ)\ < η for all χ G [c1, c2] •

We also mention that if y is a function of class *C\[clr c2], *R) (see § 1)
and its derivative y' admits an asymptotic expansion

(3-5) y' ~go + ε̂ χ -r &gt - . · · : + εη^η + . . .,

where gk e C([cir c2], R) (k = 0, 1, 2, ...), and y itself has the asymptotic
expansion written down above with coefficients fk (k = 0, 1, 2, ...), then
fk G C'Ctcx, c 2 ], R) and the expansion (3.5) for y' can be obtained by term-
by-term differentiation of (3.3), that is, gk - fk (k = 0, 1,2, ...). To prove
this we must integrate the expansion for y' from c t to χ and use the
uniqueness of the coefficients of the asymptotic expansion.

We now proceed to the study of asymptotic expansions of ducks and the
corresponding values of the parameter a.

Suppose that the trajectory 7 of (2.1) on the Lienard plane enters the
ε-galaxy of the slow curve in the halo of the point with the abscissa x2 > xQ

and leaves it in the halo of the point with the abscissa xl < JC0. In the
interval between these two points it is defined by a function y = y{x)
infinitely close to y = f(x). Let a be the parameter value corresponding to
the solution in question.

Theorem 3.1. The parameter a, and also the function y(x), considered on
any standard interval [x\, x'2], χγ ^ x\ -^ x'2 <^ x2, admit an asymptotic
expansion in powers of ε:

(3.6) { ~ c0 -j- α,ε + α,ε2 + . . . -f αηεη -f . . .

(χ) - / ( * ) + ε/, (χ) + e*/2 (x) -f · · · -f εη/η (χ) + .. .,

symbol ~ in (3.1) and in the relation r\n ~ 0 is used in different senses.
Unfortunately, this cannot be avoided, though the difference between these two uses of
the sign ~ is always clear from the context.
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where the standard numbers alt a2, ... and the standard infinitely smooth
functions fx, f2, ... are determined by the following recursion relations:

(3.7)

/ l ( l ) s =-7w-·
J? ί-Λ 4'f ι 4'4 ι ι f 4
Γη (χ) = /ι/η-Γ/ϊ/η-1+ • · · +/n/l»

Ρη(ΐ)-αη Fn(i)-i
7n+i W

Remark 1. In the expressions for /x, . . ., / n + 1 , . . . in (3.7) the right-hand
sides must be defined by continuity at χ — a0 (in other words, we must use
Hadamard's lemma and "cancel" χ — aoin the numerator and denominator).

Remark 2. From (3.7) it is clear that the expansions (3.6) do not depend
on the choice of the trajectory-duck, the corresponding value of a, nor the
interval [x\, x'2] (as long as on this interval the trajectory is infinitely close
to the graph of f(x)). This means that the difference between any two
solution-ducks on the part where they are infinitely close is actually less than
any finite power of ε; the same is true for the parameter values corresponding
to different ducks. For more precise statements, see §§3.3-3.5.

Proof of Theorem 3.1. We consider the sequence of planes Hn of the
variables (x, yn), where y1 = e-^y — f(x)), . . ., ι/η+1 = ε " 1 ^ — /„(*)), . . .;
note that Yl1 is the phase plane. As before, we denote the image of the
trajectory 7 on Un by 7. We introduce an auxiliary function h(x), which is
defined by f'(x) = -h(x){x~a0). (From (3.7) we find that/i(x) = 1/A(x).)
From the condition f"(a0) Φ 0 it follows that h(a0) Φ 0; if a0 is a minimum
point of fix), then h(x) < 0. On the phase plane (2.2) can now be
rewritten in the following form:

(3.8)

where αα> = (ο — αο)/ε.
Next we prove by induction on η the assertions (An) and (Bn) below.
{An). The trajectory 7 on Y\n is the solution of the equation

(3.9)

where the functions/!, ..., /„ are determined by (3.7), Pn is a standard
polynomial in the variables ε, / l 5 . . ., fn_t, f[, . . ., /ή-·,, J/n,and am is a
finite number.
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Corollary 3.1. The shadow on Tln of the slow curve (that is, the curve on
which yn — 0) is the union of the line χ = a0 and the curve yn = fn(x).
Moreover, outside the halo of (a0, fn(a0)) the slow curve lies in the t-galaxy
(and not only in the halo) of its shadow.

This follows from the fact that a<"> and Pn in the second equation (3.9)
are finite.

(Bn). The trajectory γ on Πη enters the ε-galaxy of the slow curve
(hence, by the corollary, also the t-galaxy of yn = fn(x)) in the halo of the
point with the abscissa x2 > a0 and leaves it in the halo of the point with the
abscissa χ ι <̂  a0.

Ilx is the phase plane. The validity of the corresponding assertions (Ax)
and (Βχ), except of finiteness of a ( 1 ), was proved in §2 where a(0> = a. As
we see below by induction on n, the finiteness of a*1) follows from the
remaining assertions in (AJ and (5,). (More generally: the finiteness of a ( n )

follows from the remaining assertions in (An) and (Bn).)

Lemma 3.1 (about the absence of excursions). // (An) and (Bn) hold, then
in the interval between x2and x1 the trajectory j on Un lies entirely in the
halo ofyn = fn(x).

The proof is similar to that of Lemma 2.2 (the only difference being that
the curve υ = g(x) in Fig. 2.5 must be replaced by yn = fn(x)). •

Now we take the inductive step.
1) We make the change yn+1 = ε - 1 ^ — fn(x)) and obtain the following

system on Π η + 1 :

* = U + e/2 + · •. -f ε"-ι/Β + &nyn+l,

(3.10) · y n + 1 = e - * 0 r n - / ; ( x ) . i ) =

= ε"' [yn+i ( i - c 0 ) Λ (χ) + α<"> + < ? n _ / ; . ( / , + . . . + znyn+l)],

where the polynomial Qn is obtained from Pn by the substitution
yn = 1n + εΐ/η+1. In the expression Qn — fn-<Ji-r • . • + εηί/η+1) certain
terms contain the factor ε (among them all those in which yn + 1occurs); we put
these terms outside the square brackets, having first cancelled ε, and obtain

(3.11) yn+i = ε"' [yn+l (x-a0) h (x) + a™-Fn

where Pn+i is some standard polynomial in the variables ε, /x, . . ·, /n>
/j, . . ., /ή, ί/n+n and Fn(x) is the sum of the terms that do not contain

the factor ε. Finally, by writing Fn(a0) = an and Fn(x) — an =
= (x — ao)h(x)jn+1(x)(which is the last equation in (3.7)), we obtain

(3.12) yn+l = ε"* ( » B + I - / „ + , (*)) (x -a0) h (x) + a<n+») + Pn+l,

where a<n+1> = (a(n> — αη)/ε. Now (3.12) together with the first equation of
the system (3.10) forms a system of exactly the same type as (3.9); only
the finiteness of a<"+1> is not yet proved.
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2) We construct the shadow of the slow curve of (3.12) on Π η + 1 . Here it
is convenient to use (3.11): the finiteness of a(n> guarantees that the
branches of the curve lie at a finite distance from one another (Fig. 3.1).

r("o)

Fig. 3.1.

By (Bn), the trajectory γ on ! ! „ , has a point whose abscissa is infinitely
close to x2 in the ε-galaxy of yn = fn{x). The corresponding point on Π η + 1

has the same abscissa and a finite ordinate yn+1. Hence, by virtue of the
slow-rapid character of the field on Π,,+j, the trajectory y enters the
ε-galaxy of the slow curve on Π η + 1 in the halo of the point with the abscissa
x2 (see the argument in the proof of Theorem 2.1). Similar arguments on
the "exit" of the trajectory show that (βη+ι) holds.

Fig. 3.2.

3) Next we prove that the finiteness of a<"+1> in (3.12) follows from the
remaining assertions in (/in+i) and (Bn+1). Let a(n+1) be infinitely large and,
to be definite, positive. Then on yn+1 — / 7 l + 1(z)the field is directed
vertically upwards (Fig. 3.2). At the same time the character of the
configuration of the branches of the slow curve is such that the right branch
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lies above the curve yn+1 = /n+i(a;)and the left branch below. (This follows
from the fact that h(x) < 0 and a<n+1> > 0 . ) What is more, the entire
ε-galaxy of the right branch of the slow curve lies above the curve
yn+1 =/ n + 1 (x)and that of the left branch below. (This follows from the
fact that a<"+1> is infinitely large.) Consequently, in order to satisfy (Bn+1),
γ must intersect the curve yn+i ~- jn+i(x) from top to bottom, which
contradicts the direction of the field on it.

The case of infinitely large negative o ( n + 1 'is treated similarly: in this case
the field on the curve yn+1 — fn+1(x)is directed vertically downwards, and
the trajectory must intersect this curve from bottom to top. Thus, a ( n + 1 ) is
finite, and (.4n+1)is true.

Let us sum up. We have proved by induction the validity of (An) and
(Bn) for any n, and thus the existence of the expansions (3.6). In addition,
we have proved (3.7), except those formulae that give an explicit expression
for the functions Fn{x). This expression can be obtained by writing out the
polynomials Pn explicitly, which is, however, rather cumbersome. Instead,
we use the fact that the existence of the expansions (3.6) has already been
proved and write out the following equalities:

(The existence of an expansion for y' can be obtained by dividing the
expansion of y by that of x.) Substituting the resulting expressions in
y = y'(x)x and collecting similar terms, we obtain

(3.13) (/7ΐ + *-βο) + (/72+/»7,-βι)ε + (/73 + /ί/2 +

+/;/, - a2) ε2 -f... + wfn+i+Kfn + /;/„_, + . . -+/;·/, - ο εη + • · · = ο .

Equating each bracket to zero for χ = α0, we find that an = Fn(a0); for
arbitrary x, by equating the first bracket to zero we find / 1 ; then f2, and so
on. As a result we obtain (3.7).

Theorem 3.1 is now proved. •

Corollary 3.2. If ao= 0 and f(x) is even, then in the expansion (3.6) for a
all the coefficients an = 0 (n = 0, 1,2, ...).

Proof. From the fact that f(x) is even it follows, by (3.7), that all the fn(x)
are even, all the/„'(*) are odd, and all the Fn(x) (n = 1,2, ...) are odd,
hence, an = Fn(0) = 0. •

Remark. The corollary, strictly speaking, does not yet mean that (2.1) with
even /(JC) for a = 0 has solution-ducks: it only means that the values of a
corresponding to the ducks are less than any finite power of ε. Nevertheless,
ducks for a — 0 actually exist, which can be proved by symmetry arguments.
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For if a = 0 and f(x) is even, then the vector field corresponding to (2.1) is
such that if (x, y) is mapped to (—χ, y), then the horizontal component of
the vector is unchanged and the vertical component changes sign. Hence, all
the trajectories that intersect Oy are symmetrical about this axis (Fig. 3.3).

Fig. 3.3.

In the same way we can prove the existence of ducks for functions f(x)
such as, for example, f(x) = x4, which does not satisfy the condition
f"(a0) Φ 0 assumed in Theorems 2.1 and 3.1. However, here the result of
Theorem 3.1 is false: we can prove that a trajectory-duck on the Lienard
plane deviates from the slow curve fix) = x 4 by a quantity of order ε2/3 and
not of order ε.

The qualitative behaviour of the solutions, in particular the evolution of
cycles, depends principally on whether the values of a corresponding to the
ducks lie to the left or to the right of a0, in other words, on the sign of ax.
Therefore it is convenient that we can determine ax directly from f(x).

Corollary 3.3. The following formula holds: ατ = — — ~τ^ (a0). In

particular, if a0 is a minimum point of f(x), then the sign of ax is opposite to
that off'"(a0).

Proof. We recall that/^x) = l/h(x), and so F^x) = f((x)Mx) = -h'(x)/h\x),
where the function h(x) is determined by the relation/'(x) = — h(x)(x — a0).
By Taylor's formula, h(a0) = -f"(a0) and h'(a0) = —f'"(ao)/2, as required. •

In conclusion of this section we give the first three terms in the expansion
(3.6) for the van der Pol equation. Substituting f(x) = x3/3~x, a0 = 1 in
(3.7), we obtain

12 —
22-}-4:r-i-7

26z2-!- 159i+ 121

a =. _ J _ - a L · η - - 1 7 3

3.2. Live ducks.
Here we construct a number of examples, in which solution-ducks can be
found explicitly.
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The relatively simple form of (3.7) suggests the following question: is it
possible to choose a function φ(χ) such that all the/n(x) (n = 1, 2, ...) have
the form

(3.14) / „ ( * ) = fcn-<P(*),

that is, they differ only by a factor (something like "eigenfunctions" for the
non-linear map (3.7)). Then the trajectory-duck takes the form

(3.15) y(x) = f(x) + (λ-,ε + λ-2ε
2 + . . .+ Ληε» + . . .)ψ(χ) =

= f(x) + Κ(ε)·ψ(χ).

We can substitute this solution in the initial equation (2.1) and obtain
explicit values for the constants Κ = Κ (Ε) and a = α(ε).

To find a suitable function φ(χ) we substitute/„ from (3.14) in the
recursion formulae (3.7) and obtain

/*„(*) = /^Α-ηφ'φ -f- &2£η_ιφ'φ + . . . + Α'^φ'φ = Οηψ'(χ)·ψ(χ),

In + i \X! — «η + ΐΦ W = ~ " 7l (x) ~ " " "ίψ (χ>·
χ — a0 χ — α 0

Cancelling φ (ζ) we obtain

<ρ'(χ)·φ(χ) = ρχ + q,

where p and q are constants. From this we deduce that

(φ2(ζ))' - 2(px + ? ) , ψ°-(χ) = Ax* + Bx + C,

and, finally,

(3.16) <$(x) = ]/ Ax" + Bx -f C,

where A, B, C are constants. Since the choice of kx is arbitrary, it is
convenient to take k1 — —\; then from f-fot) = —φ(χ) = -(χ -ao)/f'(x) we
obtain/'(χ) - (χ -αο)/φ(χ), which allows us, knowing φ(χ), to find the
function /(x):

(3.17) / (^ = f £=fs_ i x .

Various kinds of examples of ducks can be obtained for various choices of
A, B, C, and a0 in (3.16) and (3.17).

Example 1. f(x) = χ2, α0

 = 0> ^>(-x') = const. We look for the solution in
the form y(x) = x2+ K; substituting this in

dyldx = 2x — ylx = (a — X)/E'1K,

we obtain 2Kx = εα — εχ. hence, a = 0 and Κ = —ε/2. Thus, for α = 0
we obtain the solution-duck y = χ- — ε/2.
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Example 2. f(x) = V 1 -f x'\ a0 = 0, φ(χ) = ]/ i + χ2. We look for a

solution in the form y(x) = (1 + -fiOV 1 + x"; substituting it in

dyldx = (1 + Κ)χ!ΥΤ^Γχ~~ = 2//i = (a — x)/t-1KV i -f a:2,

we obtain (1 + A)A'a: = ε (α — x), and so α = 0 and Κ2 + Κ + ε = 0. Of

the two solutions to this quadratic equation only Κ = ~ ^—~ is

infinitely small, and 1 -f- Κ = —' 9 ~ E . Hence, for a = 0 we obtain the

solution-duck i/ = — ~~ ·]/ 1 + ζ2.

Example 3. /(x) = (x — 1) —log χ (χ > 0), α0 = 1, φ(χ) = χ. As above,
substituting y(x) = f(x)+ Kx in dyldx - y/x we obtain K- -f /ί + ε = 0
and εα = - # , and so ί = - Ι + ^ Γ ^ . fl = l - / m e =

= 1 -f ε -ρ 2ε2 + 5ε3 + 14ε4 + · · · · For this value of α we obtain the

solution duck y = + 1 ~ ε a: — 1 — log x. It is of interest that in this

example the coefficients an {n = 0, 1, ...) form the sequence of Catalan
numbers: they satisfy the recursion relation a0 = 1, an = a o

a n-i + βι«η-2 +

+ . . . + a n _ a a 0 and are also determined by the formula an — <*('}, and

α(ε) = 2~g is t h e i r g e n e r a t i n g f u n c t i o n (see [ 8 3 ] ) .

Examples 2 and 3 are particular cases of a more cumbersome formula:

f(x) = ]/ x2 + C — a0 log ( I + I - ' T K ) , φ(ζ) = V a;2 4- C. Here for a

solution-duck Κ = ^±±ΐβΞΚ, and α = -(Α7ε)α0 = ^~^~^ fl(| =

= αο(1 + ε -f 2ε2 + . . . ) · Geometrically different pictures are obtained for

C < 0, C = 0, and C> 0, and also for a0 <0,ao= 0, and a0 > 0.

Example 4. /(z) = (}/~x)3/3 — V~x (x > 0, e0 = 1, φ(χ) = 2VT.) . We
look for a solution in the form y(x) = (νΊ·)3/3 — ]/x~+ Ar }/~x and obtain

cfj: = (x + Κ — l)/2 I T = y/x = (o — ij/e-1^ Vx,

and so A = —2ε and a = 1 -f 2ε. Hence, for α = 1 -f 2ε we obtain the

solution-duck y = (|/7)3/3 — (1 + 2ε) ~\/~χ.
The form of the function /(x) in the last example resembles the function

fix) = x3/3 -x in the van der Pol equation, so that the substitution χ = χι/2 is
quite natural. It leads to an equation that makes sense not only for positive
values of x'; however, we do not obtain the van der Pol system, since the
second equation of the system also changes. As a result we obtain the next
example.
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Example 5. The equation

with a = 1 + 2ε has the solution-duck y = xs/3 — (1 -f 2ε)ζ.
Of course, substitutions of a different kind could have been made in the

preceding examples. In all five examples the resulting explicit solution gives
the longest duck.

In conclusion we mention one interesting fact: in all our examples the
series (3.6) turned out to be convergent. The function j(x) = ex'!2 gives an
example of the situation when the series for y(x) is only asymptotic. For
from (3.7) it is easy to see that in this case /„(*) = ( —i)nkne-^n~1^''2, where
the numbers kn satisfy the relation

(3.18) k, = 1, kn+1 = η(^η + . . . + knkj.

Thus, the series (3.6) for y(x) takes the form

y(z) = e*V2(l + V kn.(-ze-*)»)**e*'2(l + § knz
n),

where ζ = —ze~x', that is, it is actually a power series. Its coefficients kn

satisfy kn > (n~ 1)! (This is proved by a trivial induction from (3.18).)
Consequently, by the Cauchy-Hadamard formula, the series has radius of
convergence 0.

The authors do not know of any examples in which the series (3.6) for a
is convergent.

3.3. The exponential microscope. Tunnels, funnels, showers. The entry-
exit function.
By the transfer principle, on the non-standard plane *R the theorem that
solutions of differential equations depend continuously on the initial values
remains in force. One of the consequences of this theorem is that if an
equation has one solution-duck, then near this solution there must be other
solution-ducks. From the results of §3.1 it follows that any two ducks (of
course, living near one and the same extremum of f(x)) coincide to within
any finite power of ε. However, on *R2 the usual topology of solutions of
differential equations is valid: no two phase curves can have common
points. The only conclusion from this is that the distance between two
trajectory-ducks is infinitely small of higher order, that is, less than ε" for
any finite n. Thus, the sequence of substitutions ("linear magnifying
glasses") yn+1 = ε - 1 ^ — /„(*)) (η = 1, 2, ...) does not allow us to
distinguish between different ducks, separating them from one another by an
appreciable distance: on each plane Πη the ducks are infinitely close to one
another. To obtain such a separation we must use a more powerful
magnification—the so-called "exponential microscope", which we now
describe.
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For any a > 0 we introduce the odd function

ί 2C^~

x<rO.

This determines a one-to-one map of *R onto *R. Its graph for an infinitely
small α is conventionally shown in Fig. 3.4.

-1
I

I

• ι i—-*=S-J

1 τ

Fig. 3.4.

In this case this function maps all perceptible points into the halo of ± l ;
many infinitely small numbers also fall into this halo, for example, all
numbers of the form a" for finite n. On the other hand, numbers of the
form e-'"'ha for all finite positive k are mapped to numbers of the interval
[0, 1] at appreciable distances from 1. The function in question is
infinitely differentiable everywhere except at χ = 0. In what follows we
need the relations

(3.19)

Let υ = β(χ) be the phase curve of (2.2) on the phase plane, which is a
duck on some closed interval [x1( x2], X\ ^ a0 <4 x2, that is, it lies in the
halo of the curve ν = fi(x). On the phase plane we consider a domain Τ
bounded by the lines χ = xx and χ = x2 and the curves υ — β(χ)+ I and
υ = β(χ)~ I. We substitute

(3.20) ζ = (ν -

On the (x, z)-plane the image of 7" is precisely the rectangle Ρ = [xu x2] χ
χ [-1, 1 ]. The graph of ν - β(χ) goes into the line ζ — 0. We still have to
rewrite (2.2) in the new coordinates. It is convenient to do this in two
steps: putting w — ν — β(χ) we obtain (after suitable transformations) the
system

χ = w -f β (χ),

w — ε"1 (χ — a) u>/p (x);
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writing ζ = w^ and taking (3.19) into account we obtain the system on the
(x, z)-plane

(3.2.)
I = (x — α)2/

We find that the right-hand sides of both the equations in (3.21) are finite in
the entire rectangle P. Outside the halo of the lines ζ = ±1 the value of
ζΠ/ε] is infinitely small, so that we can write down a standard system
infinitely close to (3.21):

r 'x=fi(x) = i/h(x),
(3.22) 1 ·

I z=(x-ao)zlfl(x) = (x — ao)h(x)z;

we recall that/ x(x) is the shadow of the trajectory-duck on the phase plane,
so that the function h(x) — l//i(x) can be found from f'(x) = —h(x)(x—aQ).
Now (3.22) is remarkable in that as an equation with separable variables it
can be solved explicitly:

(3.23) ζ = z(x) = C-exp{j h"-(x){x - ao)dx} .

For example, for the van der Pol equation h(x) = ~(x+ 1), a0 = 1, hence,

We write ( 1 )

(3.24) H(x)=\ Λ2 (r) (a—o0) dx= \ - ^ f dx = ~ \ f (x) h (x) dx.

Lemma 3.2. On the interval [xu x2] the function H(x) has a unique
minimum at χ = a0; ζ = ~ζ(χ) has a unique extremum at the same point.

The proof is straightforward if we take into account the fact that h(x)
does not vanish on [xl: x2] • •

This lemma allows us to draw a picture of the solutions of (3.22)
(Fig. 3.5).

We must establish the relationship between the trajectories of the systems
(3.21) and (3.22). Outside the halo of the lines ζ = ±1 the right-hand sides
of these systems are infinitely close, consequently the trajectories are also
infinitely close (see [1], §16). It turns out that they stay infinitely close
right up to the lines ζ = ±1. For suppose that a trajectory of (3.21) is in
the halo of some standard point (x0, 1), x0 € [xu x2], x0 Φ α0. Then its

is useful to note that this integral, multiplied by ε-1, becomes infinitely close to

f div -j dt, where ^ is a vector field on the Lienard plane and γ is a trajectory-duck.

Υ

For, div 2/ = — ε-α/'(^) and dt = dxlx ~ h(i.)cx, since for ducks χ ~ \/h(x).
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velocity along the vertical ζ is not infinitely small; therefore, the trajectory
covers an infinitely small distance along the vertical (up to the line ζ = 1) in
infinitely small time. Since the velocity along the horizontal χ stays finite,
in this same time the trajectory covers only an infinitely small distance in
the horizontal direction. (Outside Ρ the analogous assertion becomes false:
being still in the halo of ζ = ±1, the value of ztVe] becomes infinitely large,
so that trajectories of (3.21) become almost horizontal.) We have obtained
the following theorem.

Fig. 3.5.

Theorem 3.2. The functions z(x) defined by (3.23) within the boundaries
of the rectangle Ρ = [xx, x2] x [—1, 1] (and for standard C) are shadows of
trajectories o/(3.21).

We still have to establish the relationship between the behaviour of a
trajectory on the (x, z)-plane and that of the corresponding trajectory on the
(x, i>)-plane. Suppose that some trajectory (x(t), v(t)) of (2.2) on the
(x, u)-plane enters the halo of the graph of β(χ) (or, what is equivalent, the
halo of the graph of /χ(χ)) in the halo of a point with the abscissa p, where
ρ is standard, a0 < ρ < x2. In this case the "almost vertical" part of this
trajectory intersects the curve υ = β(χ) + 1 (the upper boundary of V) at a
point whose abscissa is equivalent to p. Hence, the corresponding trajectory
(x(t), z(t)) on the (x, z)-plane intersects the line ζ = 1 in the halo of the
point (p, 1). In this case the shadow of the trajectory (x(t), z(t)) in Ρ is
the graph of one of the functions z"(x) of the family (3.23), namely, the one
that passes through (p, 1). Two cases are possible:

1) The graph of ~z(x) intersects the line ζ — 1 for the second time at a
point (q, 1), where Xj <q <a (Fig. 3.6). In this case the trajectory
(x(t), z(t)) also intersects the line ζ = 1 at an infinitely close point. Hence,
returning to the (x, u)-plane, we can conclude that the trajectory (x(t), v(t))
leaves the halo of the graph of β(χ) (and Λ(χ)) in the halo of a point with
the abscissa q. The number q can be obtained from the conditions

(3.25) H(q) = H(p), q

where Η is defined by (3.24); the uniqueness of q follows from Lemma 3.2.
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2) The graph of z(x) leaves the rectangle Ρ on its lateral side, that is, at
the point (x1( z{), where z1 < 1. (In Fig. 3.6 it is the graph passing through
(p1, 1).) In this case the trajectory (x(t), v(t)) on the (x, i>)-plane stays
infinitely close to the graph of j3(x) up to the point x1.

Fig. 3.6.

Similar statements can be made for the Lienard plane: if the trajectory
(x(t), y(t)) enters the halo of y = f(x) in the halo of a point (p, f(p))
(respectively, (p', ftp')), then it leaves it in the halo of (q, ftq)) (respectively,
it stays in the halo of the curve y = f(x) up to (x1( ftxi))). But all this is
true only under the condition that there is a solution-duck on the whole
interval [xl, x2].

The results we have obtained allow us to construct an entry-exit function
Φ : Ρ <—• q, mapping "entry points" ρ into the corresponding "exit points" q.
The function Φ is standard and is defined by (3.24) and (3.25) or by the
equivalent relations

ν ν
\ h2(x) (x —ao)dx= — \ f (a·) h (x) dx = 0.

A remarkable feature of Φ is that it does not depend on the parameter a.
More precisely, its dependence on a is indirect: it influences only the
domain of definition and range of the function Φ, but the functional
dependence of q on ρ is the same for different a. The domain and the
range of Φ are constructed in the following way. Suppose that for a given
value of α there are solution-ducks of (2.1). From them we choose that
which is the "longest duck" for the given value of a, that is, whose shadow
includes the longest segment of the graph of f(x). Suppose that this
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segment of the graph is projected into the interval [xly x2] of the x-axis
(one or both endpoints of [xu x2] may be infinite). We consider intervals
[q, p] such that H(q) = H(p) = a, a > H(a), q <p. By Lemma 3.2, all
these intervals contain the point a0, and for different α they are nested in
each other. Therefore, among them there is a longest interval [q0, p0]
nested in [xlt x2] • In this case the domain of Φ for the given value of a is
[d0, Pol, and its range is [q0, a0]; here Φ(α0) = q0, Φ(ρ0) = ao, and Φ
decreases monotonically. (If we study ducks in the neighbourhood of a
maximum point of f(x), then the motion on all three planes—the Lienard
plane, the phase plane, and the (x, z)-plane—is from left to right, so that
[q0, a0] becomes the domain for the entry-exit function and [a0, p0] its
range.)

The motion of the trajectories of (2.1) (and all equations connected with
it) on the non-standard plane *R2 can be imagined as a sort of theatre of
shadows. What we can "observe" (or, if you prefer, "draw" on the graph) is
not the trajectory itself but its shadow. In particular, we "do not see" how
the trajectory moves over the set of infinitely large numbers; nor can we
"distinguish" between infinitely close trajectories: they merge into one for
us.

Fig. 3.7.

This colourful point of view helps us to notice three similar phenomena,
which are represented in Fig. 3.7, a, b, and c and are called, respectively, a
funnel, a shower, and a tunnel. A funnel is a bundle of trajectories that at
the beginning are at an appreciable distance from one another and then
become infinitely close. A shower is a bundle of trajectories that at the
beginning are infinitely close and then deviate considerably from one
another. A tunnel is a bundle of trajectories that forms a funnel at the
beginning and then a shower. All three notions have their standard
analogues, of course: these are bundles of trajectories such that the distance
between them somewhere tends to zero as ε —*• 0, and somewhere does not.
However, these phenomena were discovered by non-standard methods,
namely in connection with ducks: we have seen that each solution-duck
generates a whole tunnel of close trajectories; entering a tunnel and leaving
it is regulated by the entry-exit function. (To discover funnels and showers
we need to know the global picture of the behaviour of the trajectories of
an equation; therefore, suitable examples will be given below in §4.) In
the study of the qualitative behaviour of solutions of equations with a small
parameter, funnels, tunnels, and showers play a role no less important than
that of singular points in the qualitative study of ordinary equations,
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For instance, the presence of a tunnel allows us to establish the existence of a
duck-cycle (see §4.3), from which it follows in turn that there are funnels
and showers.

We mention in conclusion that tunnels can be observed by means of a
computer, if we draw the trajectories by means of a graph plotter. For
example, let us choose ε = 1/20 and a value of a corresponding to a duck.
In this case the distance between two trajectory-ducks (in the domain where
they are close) is of the order e-11* — e~20 « 10-9. Such precision is still
quite attainable for a numerical solution, so that two trajectories stay
numerically distinct and can diverge later by an appreciable distance. At the
same time, a graph plotter under any reasonable choice of scale illustrates
precisely the lines that at first coincide and then diverge (that is, something
like Fig. 3.7).

3.4. The life of ducks is short.
In §3.1 we established that any two values of a for which there are solution-
ducks have the same asymptotic expansions in powers of ε (see (3.6)) hence
differ from each other by a quantity less than any finite power of ε. In this
section we establish that actually the difference between the two values of
the parameter is a number of the form e~i/ke, where k is some finite positive
number. Thus, the range of the parameter corresponding to ducks is
incredibly narrow: if (as is said about the van der Pol equation at the
beginning of Cartier's paper) we assume that ε is of the order 10 ~5, then to
"catch" a duck we need to make computations with an accuracy
approximately e-1/E = e~l°5 « 10-43 00°, that is, we must take into account
more than 40000 decimal places/1* The precise examples of §3.2 are of
great interest.

Theorem 3.3. Let a be a parameter value for which there is a solution-duck.

The parameter value a ~ a also corresponds to a solution-duck if and only if

there is a finite positive number k such that

(3.26) \a — a | = e-1'**.

Proof. Let β(χ) denote the solution-duck on the phase plane corresponding
to the parameter value a. As in §3.3, we construct on the phase plane the
domain 7" bounded by the lines χ — x1 and χ = χ2 and the curves
ν = β(χ)+ 1 and ν = β(χ)~ 1. (Here J3(x) is a duck on the whole interval
[xlt x2].) We carry out the same change of variables (3.20) as in §3.3:
ζ = (ν — β (x))[£\ but now we apply it to the equation

ί £ = ν,
\ .(3.27)

corresponding to the parameter value a and not a.

the same time, ducks and all phenomena connected with them can be effectively
discovered by numerical computations for such "moderate infinitely small" values of ε as
1/10 or 1/20.
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Let us outline briefly the corresponding computations. We put
w = ν-β(χ); from (3.27) we have v'x = ε-'((α — x)lv — /'(*)); from the
analogous equation fora' we have β'(a·) = ε - ^ ά — x)/\'>{x) — j'(x)) hence,

w'x = ε-]((α—x)lv— (a — χ)/β(χ)), and w = e.-l(a — χ — (a — x) vl$(x)).
The last equality is transformed by the substitution ν = \ν + β(χ) to the form

— ΰ)Ι\;(χ) + (a — d)lw).

bearing (3.19) in mind we obtain the

(3.28) w=

Next, by substituting ζ =
equation

ζ = z((x — ά)Ι\',(χ) + (a

At this moment it is convenient to write b = (a — Λ)[ε], and so α — a =
Substituting this expression in the last equation we finally obtain the system

(3.29)

We have to analyze the behaviour of the solutions of (3.29) in the
rectangle Ρ = [xv x2] x [~1, Π on the (x, z)-plane. First of all, Ια —αΊ < 1
and so 16 I < 1 . It is useful to consider two cases: (1)16 1 ^ 1 ; ( 2 ) l 6 l ~ l .

In the first case the lines ζ = ±b divide Ρ into three strips, in each of
which the trajectories behave differently. In the domain \z\< 16 I the term
(b'z)^!*] in the second equation of (3.29) is infinitely large, so that the field
(3.29) is almost vertical0> (Fig. 3.8).

v

τ—ί-

κ
t i ' ' 4 » Ϊ " " Τ

: i ί ! l'nc

y
1 4

Λ

>
i
1
1
\

i
1 '

: i
1

» 4 τ t » »

! ί ί π

•XL! \

I I I
H I

b<0

Fig. 3.8.

(Owing to the factor ζ the direction of the field is preserved on crossing the
line ζ = 0, thus, it depends only on the sign of 6.) Conversely, in the
domains Izl > 16 I the term (6/2)'1/EJ is infinitely small, so that as in §3.3,
(3.29) can be replaced by the infinitely close system (3.22) (see also
Fig. 3.5). It is evident that a trajectory entering Ρ at the point with the
abscissa ρ > a0 leaves at the point with the abscissa q <̂  a0, hence, is a duck.

Thus, we can make our first deduction: if | b | = \ a — a
that is, if k > 0 is finite, then (3.27) has solution-ducks.

, -Ilk « 1 ,

ζ = 0 the second equation of (3.29) is undefined. Nevertheless, the direction field
can be extended at these points by continuity, making it vertical.
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Now we consider the case 161 ~ 1 and show that there are no ducks.
Suppose, to be definite, that b < 0, so that we have a picture similar to the
second one in Fig. 3.8, with the difference that this time the strip of vertical
(rapid) motion occupies almost the whole rectangle P, keeping below and
above only infinitely narrow strips of slow motion. We consider, again to be
definite, a trajectory that enters Ρ from above at the point with the abscissa
ρ > a0. (The other cases, including that of b > 0, are treated similarly.) At
first this trajectory passes through the strip ζ ~ —b; to do this it requires
an infinitely small amount of time, since in this domain ζ < 0 (both terms
ζ(χ-Έ)/β(χ) and z{blz)^l^ are negative, and the first is appreciable). It then
passes through the strip \z\< \b\, which also needs an infinitely small
amount of time (since in this domain ζ is negative and infinitely large), and
goes into the strip ζ ~ b. In this domain the negative term z{blz)VM, being
finite, can be compensated by the positive term z(x -α)/β(χ). Thus, the
trajectory, staying in the strip ζ ~ b, can reach the point with the abscissa
χ = Έ. But later, for χ < ~a, both terms in the expression for ζ become
negative again. The assumption that the trajectory leaves Ρ at the point
with the abscissa q <Έ leads to a contradiction: to cover the path from
χ = Έ to χ = q needs an appreciable amount of time (we recall that χ is
finite throughout P), and at those points of the trajectory where χ < α the
term ζ(χ-Έ)/β(χ) in ζ is appreciable; this contradicts the fact that the
trajectory describes only an infinitely small path in the vertical direction.
This proves the theorem. •

Remark. A more careful examination of Fig. 3.8 allows us to obtain more
information on trajectories of (3.29) than we needed to prove the theorem.
In particular, it is easy to show that no trajectory stays in the halo of the
lines ζ = ±b in the domain χ < a0 for more than an infinitely small amount
of time. The same applies to the line ζ = — b in the domain χ > α0. This
allows us to define uniquely the shadow of any trajectory of (3.29) in P. In
particular, the longest duck corresponding to the parameter a leaves the halo
of the slow curve in the halo of the point with the abscissa q0, where q0 < a0

is the abscissa of the points of intersection of the lines ζ = ±1 with the
trajectories of (3.22) tangent to the lines ζ = ±b at the points with the
abscissa a0. (In Fig. 3.8 these trajectories are shown in boldface; of course,
for other (smaller) values of b these trajectories may leave Ρ through the lateral
side, and then the longest duck corresponding to a reaches at least the point xv)

This phenomenon has been called a curtain: for a <a0 the curtain is
closed; when a enters the domain of ducks, the curtain opens a little—the
left fold moves up to χ - q and the right one up to χ = ρ, where Φ(ρ) = q,
and the duck above the interval [q, p] is the longest for the given value of a.
In the opened vertical strip q < χ < ρ we can observe ducks and all
phenomena connected with them. As a increases further, the curtain at first
opens as wide as possible ("the longest duck") and then starts to close again.
For a > a0 it is closed.



Non-standard analysis and singular perturbations of ordinary differential equations 111

3.5. Second proof of the existence of asymptotic expansions of ducks and
the parameter a in powers of ε.
We show here how we can use an exponential microscope for a certain
modification of the proof of the existence of asymptotic expansions (3.6)
for ducks and the corresponding values of a in powers of ε. For this
purpose we use the comparatively simple algebraic part of the proof of
Theorem 3.1 in §3.1 (the existence of a sequence of changes of variables

Vi = B'1(y — /(*))» · · ·» Vn+i = ε-*(ι/η — /„(*)) transforming the
equations to the form (3.9) or (3.11)), but we do not use its rather complicated
logical part.

Thus, we consider first of all for η > 0 on the (x, i/n+1)-plane Π η + 1 the
system (see (3.9) and (3.11))

f i=/1 + e/2+...+e"-i/

I !/„+. = ε'1 [j/n+Jz — an)h(x)
(3.30)

yn+i = ε"1 [yn+l (x - aQ) h (i) + a«"> - Fn (*)] + />„+, •

Let [cx, c2]be a standard interval such that a0 Ε (clt c2), f'(x) < 0 for
χ Ε [c1, a0), f'(x) > 0 for χ Ε (a0, c2]. We prove first the following lemma.

Lemma 3.3. There is a finite value of the parameter aWsuch that (3.30) has
a trajectory passing above the whole interval [cltc2] in the finite part ο / Π η + 1 .

Proof. In the proof we assume for simplicity that η > 1. Choosing dn > 0
to be standard and sufficiently large, we consider on Π η + 1 an internal domain
Dn with boundary of class C1 (the element *3J in the notation of §2),
whose shadow is the rectangle [clr c2] x [~dn, dn\. We assume that Dn is
obtained from this rectangle by infinitely small rounding of its corners by
means of arcs of circles of infinitely small radius. In the finite plane Π η + 1

above [cv c2] there are no positions of equilibrium of (3.30), since fx(x) < 0
for χ ε [cu c2]. In particular, Dn does not contain positions of equilibrium
for any standard dn > 0. The slow curve of (3.30) for χ Φ a0 can be written
in the form

Though this equation is implicit, z/n+1is involved in the right-hand side only
in the infinitely small term εΡη+1; therefore, by the implicit function
theorem the shadow of the slow curve outside the halo of the line χ = a0 is
the same as that of the curve

Next, as in the corresponding argument in the proof of Theorem 2.1, we can
verify that if we fix an interval [a\n\ a'?'] with standard end-points such that
Fni^o) € (α'ιη\ α2η)). then for sufficiently large dn > 0 the equations

, , _ Fn(x)
~ n ~ (x-ao)h{x)
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(in which y n + 1 in the polynomial Pn+i must be also replaced by ±dn) have
for any α("> ζ \αψ\ αψ1] exactly one solution z£ ' £ [cu c2]. This means that
the slow curve of (3.30) has exactly one point of intersection with each of
the upper and lower horizontal parts of the boundary of Dn. But then we
can apply Lemma 2.3 (about shooting) to Dn and to the vector field (3.30)
with the parameter α("> ζ [a\n\ a'?'). The whole left-hand side of the
boundary bDn of Dn belongs to the interval of exit S(a(n>), and the whole
right-hand side to that of entry £(a ( t l >). Therefore, the point (c2, 0) Ε bDn

belongs to the intersection of all intervals of entry .Ε(α<η>) for a.W ζ [α\η\ α'οη)]
But from an inspection of the field directions (Fig. 3.9) it is clear that for
o<"> <§; Fn(a0) the trajectory that starts at (c2, 0) leaves dDn through its lower
part and for o("> » Fn(a0) through its upper part. By Lemma 2.3 there is a

parameter value α(71) £ Ια\ such that the point of exit lies on the left
vertical part of dDn. But this immediately gives the assertion of the lemma.

•4

i ι

the case a '•« b) the case a:ny»Fn{a0

Fig. 3.9.

We now discuss what conclusions can be drawn from Lemma 3.3. First of
all, recalling that

= (In η,ε -f- F.n-1 4- «<">?"

we see that there is a parameter value α with a finite expansion (3.2) to
which there corresponds a solution-duck. But then, by Theorem 3.3, any
value of a corresponding to a duck also has a finite expansion (3.2). Since
η is arbitrary here, we see that any value of α corresponding to a duck has a
complete expansion of the form (3.1). (Incidentally, from this argument it
is clear that if an = °(a<">), then an = Fn(a0).)

Next, the fact that yn+1(x) is finite means that the function y(x)
corresponding to the solution-duck has a finite expansion (3.4). But then,
applying an exponential microscope z = (y^ — β(:τ))[ε] in the neighbourhood
of the duck, as in §3.3, we find that any duck has such an expansion (on
the part on which it is a duck). From this it follows that all ducks have a
complete expansion (3.3) with coefficients that do not depend on the choice
of the duck. This completes the second proof of the existence of asymptotic
expansions (3.6).
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§4. Qualitative behaviour of solutions of rapid-slow equations

The main aim of this section is the study of solution-ducks. Incidentally,
however, we discover many additional special features of the qualitative
behaviour of solutions of the equations in question. We begin, as usual,
with an investigation of singular points.

4.1. Singular points of (2.1).
The only singular point of (2.1) is (a, f(a)). Writing down at this point the
matrix of the linearized system

/-ε"1/' (α) ε~ι\
\ - 1 0 )

and finding its eigenvalues

i - -f'i")±VU' (β))2-4ε
• ' • 2 ~ ~ 2ε '

we conclude that:
1) if / ' ( α ) ^ 2\/~ε (in particular, if f'(a) is an appreciable positive

number), then the singular point is a stable node (degenerate if/'(α) = 2]/"ε);
2) if / ' ( a ) ^ —21/Γ"ε~ (in particular, if/'(a) is an appreciable negative

number), then the singular point is an unstable node (degenerate if
/'(a) = -21/7);

3) if 0 < /'(a) < 2]/Ti then the singular point is a stable focus;
4) if —2\/~ε <C 1'{o) < 0, then the singular point is an unstable focus.
If f'(a) = 0, in particular, at the extremum points of interest to us, both

eigenvalues are purely imaginary, and the linear part does not give a precise
answer to the question of the character of the singular point, which may
turn out to be a centre, a stable or unstable focus, or a centre-focus. In this
case we can proceed as follows: we go over to the phase plane/1) obtain on
it a singular point (a, 0), and consider the Lyapunov function

U(x, v) = {k/2)(x - a)"- + E(V - A--1 log(l + AT)) =

= (k/2)(x - a)" + εΐ'°-(Α·/2 - (k"-/3)v + . . . ) ,

where k = f"(a). Computing dllldt— k(x — a)r -f ," (a — χ — f'(x)v) and
replacing fix) by its quadratic part ^

f'(x) χ f'(a) + f"(a)(x - a) + f(a) X (x - a)V2 =

= k(x ~ a) + f(a)(x - fl)=/2,
we obtain an approximation

dUldt Λ- —kf{a)v-{x — «)';/2(l + kv).

Thus, if α is a minimum point of/(x), then k > 0, U(x, v) > 0 in the
neighbourhood of (a, 0), and the sign of dU/dt is opposite to that o f/ ' " (a) .

^'Transition to the phase plane, in spite of stretching by an infinitely large factor, is a
diffeomorphism. therefore, preserves the character of the singular point.
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Hence, the inequality f'"(a) > 0 implies that the singular point is stable, and
then it is a stable focus, while f'"{a) < 0 implies that it is unstable, and then it
is an unstable focus. Similarly, if α is a maximum point of/(x), then k < 0,
U(x, v) < 0, and the sign of dU/dt is the same as that of/'"(a). Therefore, the
conditions of stability or instability of the singular point remain the same.

Example. In the van der Pol equation/(x) = x3/3 — x, hence f'"(x) — 2.
This means that the singular points (1, -2/3) (for a = 1) and (-1, 2/3) (for
a — — 1) are both stable foci.

Stability or instability of the singular point (a0, f(a0)) for f'{a0) = 0 and
f'"(a0) Φ 0 determines the character of the Hopf bifurcation, which occurs
when a passes through the critical point a0. Suppose, to be definite, thata0

is a non-degenerate minimum point of f(x) (so that/'(a0) — 0, f"(a0) > 0),
and the singular point (a, f(a)), as a increases, changes from unstable to
stable. Then if f'"(aQ) > 0 (and (a0, /(a0)) is stable) as a passes through a0

(in the direction of increasing a), absorption of the stable cycle by a singular
point occurs, and for/"'(a0) < 0 (and instability of the singular point
{a0, f(a0))) an unstable cycle is generated from the singular point (see [63]).

4.2. Existence of duck-cycles and duck-solutions.
Among numerous solution-ducks of special interest are those that are cycles,
that is, periodic trajectories.

The existence of duck-cycles, and also their form and evolution, depend
on the specific form of the function /. To begin with we describe a general
class of functions / for which there exist duck-cycles. It turns out that for
this it is sufficient that the graph of/ has the same form as that of the
cubic curve f(x) - x3/3-x for the van der Pol equation.

Fig. 4.1.

We say that / has an admissible form on [cx, c2] if:
a) / is a standard function of class C2 on [cx, c2] ',
b) / has exactly two extremum points on [cx, c2]: an isolated minimum

point x0 and an isolated maximum point xx, where cx < xx < x0 < c2, so that
/'(*) > 0 on [cv xx) and (x0.

 C7^ a n d f'(x) < 0 on(x!, x0);
c)/(ci) </(xo) and/(c2) >/(x!), so that the absolute minimum of/on

[c,, c2] is attained at cx (and only there), and the absolute maximum at c2.
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Thus, the graph of/ has the form shown in Fig. 4.1. Let x2 Ε (c l t xx) be
such that f(x2) = f(xo) (it is evident that such an x2 is unique).

Theorem 4.1. Suppose that f has an admissible form on [clt c2\. If Xb e R.
x2< xb < x0, then there is a value of a such that the system (2.1) has a
duck-cycle with the abscissa of the beak^ xb.

Proof. 1) We consider the part of the slow curve in *R2 strictly to the left
of the singular point and denote it by Ta, that is,

Γο = {(*, /(*)): xilc,, a)}.

We always assume that a Ε *[ax, a2], where au a2 Ε R, ax Ε (xu x0),
a2 Ε (χ0, c2).

We consider on Γα the Poincare succession map Pa with the domain
of definition Da, so that Pa:Da^- Γα. We assume that (x, f(x)) Ε Da if
χ Ε [cr, a) and the trajectory of (2.1) that starts at (x, f(x)) once again
intersects Pa, and then Pa((x, f(x))) denotes the first point of intersection
after (x, f(x)). Let pa(x) be the abscissa of Pa((x, f(x))), so that

It is easy to see that the set Da and the map Pa are internal. The phase
trajectories of (2.1) intersect Ya vertically upwards (and hence transversally).
Therefore, the set

U = {(a, x): a e *\ax, a2), (χ, / ( ΐ ) ) £ ΰ α } ,

is an internal open subset of the trapezium

{(σ, χ): α ζ *[α1, α2], χ £ [ c n a]},

and the function

U -+• * [ c l 7 c 2 ] , (a, x) >-+ pa(x)

is internal and continuous (in the sense of belonging to the corresponding
space C(U, *[c1( c2]) (see § 1.3). Now if (a, xb) Ε U is such that pa(xb) = xb,
and x2< xb < x0, then the trajectory of (2.1) that starts at (xb, f(xb)) is
a duck-cycle with the abscissa of the beak xb. Thus, for the given xb the
matter reduces to the proof of the existence of an a such that pa(xb) = xb-

2) We fix a standard xb such that x2< xb < x0. We assume that standard
β] and a2 are chosen so that xb < αλ, f(a2) </(Xj). The set

A = {α: α ζ *[a1, a2], pa(xb) determinate } = {a: (a, xb) ζ U)

is an internal open subset of *la1, a2]. We put

a3 — inf(*[a!, a 2 ] \ ^ ) for A =£*[a1, a2],

a3 = a2 for A = *[a1, a,].

beak and other elements of the morphology of ducks are described in [1], §24.
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It is easy to see that pa(xb) can be indeterminate only when the singular
point (a, f(a)) is a stable node (thus, a > x0), and the trajectory ya of (2.1)
that starts at (xb, f(xb)) goes into this singular point. The set of values a
corresponding to stable nodes is closed; therefore, in any case we find that
a3 > xQ and (a3, f(a3)) is a stable node for (2.1) with a = a3.

3) We follow the change in pa(x&) as a varies on *[aly a3). Firstly, if
a = a1, then the shadow of ya breaks away from the slow curve at the
minimum point (x0, f(x0)), since in the neighbourhood of this point there is
a negative and not infinitely small vertical component of the velocity
(Fig. 4.2). Therefore, pni{Xb) ~ *2, in particular, pat(xb) <xb.

We now claim that ρ,,,-biXb) ~ az~ & f° r sufficiently small δ > 0. We
consider the two cases separately.

Case 1. /;„, (xb) is determinate. In this case a3 = a2 ^ XQ. But then
Pa, (xb) ~ fl3> since ya, cannot descend appreciably below the point (a2, f(a2))
along the right-hand branch of the slow curve, since for χ < α2 the field has
a positive vertical component (Fig. 4.3). For the same reason, in this case

a3~ & if δ > 0 is chosen so that a3— δ > x0.

*2 Xb

Fig. 4.2. Fig. 4.3.

Case 2. pas (xb) is indeterminate. In this case the singular point (a3, f(a3))
of (2.1) with a = a3 is a stable node, and the trajectory Τα, goes into this
point. By means of the usual construction of the Lyapunov function it is
easy to construct an ellipse V with centre at (a3, f(a3)) and infinitely small
semi-axes, which is a trap for the trajectories of (2.1) with a = a3, that is,
such that the vector field defined by the right-hand sides of this system is
directed strictly inside V on the boundary of V (Fig. 4.4).

/

Fig. 4.4. Fig. 4.5.



Non-standard analysis and singular perturbations of ordinary differential equations 117

But then V remains a trap for trajectories of (2.1) for a = a3— δ if δ > 0 is
sufficiently small, that is, δ < δ 0 for some δ 0 G *R, δ 0 > 0. In particular,
the trajectory ya enters V and stays there for ever, and for sufficiently small
δ > 0 it does not intersect Γα before entering V. From this it follows that
ya and Γα intersect inside V, that is, in the halo of (a, f(a)) (which is the
same as that of (a3, f(a3)), since it is clear that in this case δ ~ 0). Thus
Pa,-6(Xb) ~ α3~δ, hence, in particular /j a j_ f t (xb) > xb.

4) Thus,

Pa, (xb) <C xb, pa,-6 {xb) > H-

But the internal continuous function a *-*• pa(xb) on the connected interval
[alt a3— δ] must take all intermediate values. Therefore, there is an
a £ [«!, a3— δ] such that pa(xb) = xb, as required. •

Now by means of Theorem 4.1 we prove the existence of solution-ducks
in the neighbourhood of a degenerate isolated minimum point. We assume
that / is defined on the standard interval [d1, d2] and has the following
properties:

A. / is standard of class C2 in [dlt d2].
B. / has a unique extremum point on [du d2], the minimum point x0, so

that f'(x) < 0 for χ Ε [dlt x0) and f'(x) > 0 for χ e (x0, d2].

Theorem 4.2. If f has the properties A and B, then there is an a such that
the system (2.1) has a duck whose shadow passes along the whole part of
the slow curve over the interval [di, d2].

Proof. It is easy to extend a function of admissible form on some interval
[c1; c2] D [άγ, d2] (Fig. 4.5). Now Theorem 4.2 follows from Theorem 4.1. •

4.3. Duck-cycles of the van der Pol equation.
The van der Pol equation was the first example in which ducks were
discovered and studied in detail. Here we describe properties of duck-cycles
for the van der Pol equation, and also the tunnels, funnels, and showers
surrounding them.

A. The existence of duck-cycles for the van der Pol equation follows
from Theorem 4.1; we give here an alternative proof, based on the simple
but important property of the entry-exit function defined in §3.3 (which
we need later).

Lemma 4.1. The entry-exit function Φ for the van der Pol equation has the
following property: if Φ(ρ) — q, then f(p) < f{q) {that is, on the Lienard
plane the entry point always lies higher than the exit point).

Proof. We state our assertion in another way: it is known that

f (5-= _ i ) ( x -f l) dx = 0 (see §3.3); we must prove that ( (x2 — l)dx < 0;
q 9

here, -1 < q < 1 < p.
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On the interval [q, 1] we have x + 1 < 2 and x2- 1 < 0, hence,
( x 2 - l)(x+ 1) > 2(x2- 1). On the interval [l,p] in turn we have χ + 1 > 2
and x2- 1 > 0, hence also (x2- l)(x+ 1) > 2 ( x 2 - 1). As a result we obtain

as required.

Second proof of Theorem 4.1 for f(x) = x 3 /3-x. We start a trajectory
from (2 - δ, /(2 - δ)), where δ > 0 is standard and sufficiently small; we
choose a value of a ~ 1 (see §2, Theorem 2.1) so that this trajectory is a
duck leaving (to be definite, on the left) the slow curve in the halo of a
standard point with the abscissa q < 1 (Fig. 4.6).

3- log.

Fig. 4.6. Fig. 4.7.

Let ρ be the inverse image of q under the map Φ. From the figure it is
clear that after one turn this trajectory falls into a tunnel, one wall of which
is the previous turn of the same trajectory, and the other wall is the
trajectory that entered the halo of (p, f(p)) from the right along the
horizontal, hence, left the slow curve in the halo of (q, f(q)). The same
happens at each subsequent turn: our trajectory is a twisting spiral whose
shadow is a "duck with a head". The existence of a closed cycle with the
same shadow now follows from the Poincare-Bendixson theorem (see §1). •

B. Period. It is of interest to find the period for all a < 1. In the formula

the integral over the horizontal part of the cycle is infinitely small;
therefore, if we wish to determine Ta to within equivalence it is sufficient to
compute the integral only over the curvilinear part of the cycle. For a <€ 1

(a large cycle) we have χ ~ %τ~χ , hence,
x"— 1

1-ι ι
τ f I s — 1 , , Γ i ! — 1 , ο , / 9 , u A — a"Ta ~ \ dx + \ dx = 3 -- (a2 — 1) log

α j a — x ' J a — x v ' 1 — a 2
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The graph of Ta as a function of α is shown in Fig. 4.7; this function
increases, and a / 1 implies that Ta / 3.

For a cycle-duck on the curvilinear parts we have χ 1/0+ 1), hence,
for the duck with a head

Ta~- \(x + i)dx- \ (x + i)dz=^-+(zb-xn) ( l - f

xb 2

where xb and xn are the abscissas of the beak and the neck, respectively. It
is easy to verify that 1 + (xb + xn)/2 > 0, so that in this case Ta < 9/2.
Finally, for a duck without a head

where xt is the abscissa of the tail.
Thus, if the large cycle disappears for a ~ 1, the period does not simply

decrease from its maximum value Ta = 3 to an infinitely small quantity, but
at first (because of cycle-ducks) increases up to the value 9/2 (for the largest
duck without a head), and only then decreases to zero (on the graph of Ta

there arises an infinitely thin needle of height 3/2, see Fig. 4.7).

C. Asymptotic stability of cycle-ducks. To establish the fact of asymptotic
stability of ducks we use the formula

E= \ aix-y dt,
r

where ~2i is the vector field corresponding to the system in question and Ε is
the characteristic index of the cycle. Computing div ?> = —ε-'(a:2 — 1) we
obtain

where 5 is the area bounded by the cycle Γ. The last equality is obtained
by means of Green's formula.

The penultimate equality needs justification. The fact of the matter is
that the relation (x2- l)/(a~x) (x+ 1) holds not for all x, but for χ -f- 1.
Using one of the versions of Robinson's lemma, we conclude that this
equivalence holds also on the set \x- 1 I > δ, where δ is some infinitely
small number. Over the remaining set \x— 1 I < δ we can estimate the
integral f (a·2 — i)dt: the integrand is bounded, and the time in which the

given part of the cycle is traversed (more precisely, the upper and the lower
parts) is infinitely small; hence, so is the integral itself.

Thus, Ε <̂  0, which proves the asymptotic stability of the cycle.
Corollary 4.1. For each value of a ~ 1 there is no more than one cycle-
duck.
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For, the simultaneous existence of two cycles (one of which is necessarily
situated inside the other) contradicts the asymptotic stability of both, since
between them there are no positions of equilibrium. (The unique position
of equilibrium (a, /(a)) is always situated inside any cycle-duck.)

Remark. By the footnote to (3.24), the assertion on the asymptotic
stability of a duck without a head is equivalent to Lemma 4.1.

D. Evolution of the cycle. As a increases, the cycle for the van der Pol
equation undergoes the following evolution. At first the lower segment of
the large cycle starts to climb: there arises a duck with a head; as a
increases further, the head shrinks and finally disappears completely: there
arises the largest duck without a head. The upper segment of this duck
starts to descend, that is, as a increases the body of the duck without a head
shrinks; finally, there appears an infinitely small cycle.

We can prove an even stronger statement.

Theorem 4.3. Suppose that the parameter a corresponds to the largest duck
without a head. Then:

1) a duck with a head whose neck has the abscissa c exists for

more precisely: a necessary and sufficient condition for the existence of a
duck with a head whose neck has the abscissa c for a given a is that a K a
and

2) a duck without a head whose beak has the abscissa c exists for

more precisely: a necessary and sufficient condition for the existence of a
duck without a head whose beak has the abscissa c for a given a is that
α >Έ and

We do not give a detailed proof of Theorem 4.3, since it is in fact a
combination of the proof of Theorem 3.3 (applied to the largest duck
without a head) and the second proof of Theorem 4.1, and also some quite
simple computations. We only mention that for the van der Pol equation
the function H(x) defined by (3.24) is H(x) = x4/4 + x3/3 -χ2/2-χ + C; the
constant C = 11/12 is obtained from the condition H{\) = 0.

It is relevant to add that after the cycle-duck decreases to infinitely small
dimensions in the infinitely small neighbourhood of (1, -2/3) there occurs a
classical Hopf bifurcation: the infinitely small cycle takes a form close to
an ellipse that diminishes homothetically, and for a = 1 it becomes a stable
singular point (see [63]).
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E. Tunnels, funnels, showers. Using Lemma 4.1 as a principal tool it is
easy to obtain tunnels, funnels, and showers corresponding to ducks with
and ducks without a head for the van der Pol equation: they are shown in
Figs. 4.8 and 4.9. The points Ρ and Q (also P' and Q') are corresponding
entry and exit points. The complete justification of the figures can be
found in the second part of [19].

/ Duck without a head Tunnel

Shower

f
I

J.

\

t
J
J.

j;
I p

/

Fig. 4.8.
Funnel

ι Duck with a head

Funnel

Fig. 4.9.
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4.4. Μ. Diener's equation.
Lest the reader should think that all the properties of cycle-ducks for the
van der Pol equation in §4.3 are determined only by the outward form of
the graph of f(x) = x3/3~x, we give here one more example, studied in
detail in the thesis of M. Diener [34] :

j(x) = a:6 — x3 + x°.

The outward form of the graph of f(x) is the same as that for the van der Pol
equation (Fig 4.10), which implies that there is a large cycle for-1 <a <0,
and also the form of cycle-ducks is the same as for the van der Pol equation
(that is, ducks with and without a head for a ~ 0).

I

/ ι \

/ ' V
/ ~f

I

I
A

/ 1
/ 1

1

Fig. 4.10. Fig. 4.11.

The qualitative behaviour of the solutions is essentially influenced by one
circumstance that is insignificant at first sight: at the critical point χ = 0
the third derivative of f(x) is not positive, as for the van der Pol equation,
but negative. Hence, firstly, by Theorem 3.1, the range of the parameter
corresponding to ducks is situated not to the left of zero, but to the right:

a =-ο ε-|-ηε, τ? ~ 0. This means that for the values of a > 0 preceding

ducks a stable large cycle coexists with an (also stable) position of equilibrium
inside it. This is possible only when inside the stable cycle there is another
unstable cycle, encircling the position of equilibrium. The rise of the
unstable cycle is quite understandable: the appearance of ducks is preceded
by the Hopf bifurcation for a = 0. However, according to §4.1, for α = 0
the singular point (0, 0) is repelling; under the Hopf bifurcation only an
asymptotically unstable cycle can arise from such a point (see [63]).

For a more detailed study of the situation we need the following lemma.

Lemma 4.2. The entry-exit function Φ for M. Diener's equation is defined
on [0, 1], and its range is [-1, 0] (that is, Φ(0) = 0, Φ(1) = -1). For all
points ρ and q, -\<q<0<p<\, from Φ(ρ) = q it follows that
f(P) >/(<?)· (Thus, in contrast to the van der Pol equation, the entry point
is higher than the exit point.)

The elementary but cumbersome proof of this lemma is left to the reader.
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Corollary 4.2. Each duck without a head {except the largest one) is
asymptotically unstable. Each duck wi th a head is asymptotically stable.

Proof. We have to find the sign of the integral

[ dix 9 dt= — ε"1 \f'(x)dt.
r r

We estimate in this expression the coefficient of ε-1, that is, — \ f'(x)dt.

r

For this purpose we note that the contribution to this integral of the
horizontal parts of the cycle is infinitely small, that of the increasing parts
of y = f(x) is negative, and that of the decreasing parts is positive. Also, if
q = Φ(ρ), where Φ is the entry-exit function, then on the segment of the

ρ

cycle Γ[,ιΡ] that projects to [q, p] the integral — ^ j'{x)dt~ f f'(x)h(x)dx=0.
Γ\'ι,ρ) Q

As the entry point it is natural to choose the tail of the duck. Then for
ducks without a head, according to the lemma, the beak lies higher than the
exit point, hence, the integral over the curvilinear part of the cycle is
positive (and appreciable). For ducks with a head, according to the same
lemma, the neck lies lower than the exit point, hence, the integral over the
part from the tail to the neck is negative (and appreciable); the integral
over the curvilinear part of the head is also negative. This proves the
corollary. •

As regards the largest duck without a head, there are many such ducks
(but they are all infinitely close to one another, hence they have a common
shadow). Among them there is one whose characteristic index is exactly
zero. This duck is a structurally unstable cycle.

Now we have all the necessary facts to consider the evolution of ducks
for a given equation. When a goes through the value a0 = 0, the equation
preserves its asymptotically stable large cycle; here the position of equilibrium
situated inside the cycle becomes attracting, and from it there arises an
infinitely small asymptotically unstable cycle encircling it (Hopf bifurcation).
Later, a enters the domain of ducks: the large cycle becomes an
asymptotically stable duck with a head; the small cycle becomes an
asymptotically unstable duck without a head (which lies inside the duck
with a head). It is important to remark that the abscissa of the neck of the
duck with a head is none other than the image under the entry-exit map of
the abscissa of the tail of the duck without a head (Fig. 4.11).
This can be explained by the fact that the duck with a head enters the halo
of the duck without a head in the neighbourhood of the tail. Ducks
continue to evolve: the duck without a head grows, and the head of the
duck with a head shrinks. In the end both these two cycles (which have
different stability) merge into one, lose their structural stability, and
disappear.
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Cycles disappear, but not ducks! Ducks cannot disappear suddenly, and
we had the longest duck just now. What happens later? The behaviour of
solutions of the equation is shown in Fig. 4.12.

Fig. 4.12.

Suppose that the longest duck corresponding to the parameter value a
reaches the point Β at an appreciable distance from the maximum poi
(-1, 1). We consider a winding spiral A0A1BJA2B2As . . .; its shadow is
represented in Fig. 4.12 on the left. Here An+1(n = 1 , 2 , ...) is defined as
the point on the graph of y — f(x) that has the same ordinate as Bn (and a
positive abscissa), and Bn (n = 1, 2, ...) is the exit point corresponding to
the entry point An. This curve is the neck of a funnel that draws in almost
all the trajectories of our equation: after entering the halo of this curve
they all have the same shadow. The only exception is an infinitely thin
bundle of trajectories, approaching the spiral from the right along the ray
CAX. Passing along the segments of the spiral AlBlA2B2, this bundle forms a
shower, whose jets fill up the strip between ΒλΑ2 and B2A3, then the tunnel
A3B3, again a shower, between B2A3 and B3A^, and so on.

As a increases further, Bx (the left upper corner of the spiral) descends
lower and lower along the repelling branch of the slow curve; the curtain
closes, and the ducks disappear.

§5. Brief guide to the literature

5.1. At the present time any complete list of publications on non-standard
analysis and its applications seems impossible. However, we try to give, as
far as possible, an exhaustive list of papers devoted (completely or partially)
to applications of non-standard analysis to differential equations (see [ 1 ] ,
[3], [9], [14]-[57], [64], [72], [75]-[77] , [80]). The rest of the
bibliography is divided into the following categories: firstly, instructive
literature on non-standard analysis in Russian (see [2], [65]-[71]);

is infinitely close to the maximum point, then the spiral considered below has
infinitely many turns in the neighbourhood not only of the stationary point, but also of
the (former, but disappearing) cycle Α-β\Αν.
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secondly, papers that develop a general theory of non-standard analysis and
are closely connected with our topic (see [4] -[13]); finally, we have
included a small list of "standard" papers on differential equations with
small parameters, indicating results in those domains where one can expect
further penetration of non-standard analysis ([58], [63], [73], [74]; see
also the references in these papers).

The reader who wishes to get to the heart of the matter as quickly as

possible is recommended to follow the sequence [65], [66], [2], [3] .

5.2. The discovery and study of ducks is to a great extent the result of a
collective effort. This is why it is not always easy to determine the author
of a particular result. Among the pioneers of the application of non-
standard methods to differential equations we name in the first place Eric
Benoit, Jean-Louis Callot, Francine Diener, Marc Diener, Albert Troesch, and
Emile Urlacher. The first papers in this direction are due to Troesch and
Urlacher ([46], [47]). The first reference to ducks is contained, apparently,
in [24]. The proof of the existence of ducks given in §2 is borrowed from
M. Diener's thesis [34] ; however, some intermediate propositions of this
proof appeared even earlier (for example, in [19]), and the phase plane is
used in many papers. The existence of asymptotic expansions of ducks and
the corresponding values of the parameter a in powers of ε is proved by
F. Diener [29]. The second proof of the existence of these expansions
(§3.5) is due to M.A. Shubin. Explicit recursion formulae for the coefficients
of this expansion (§3.1) were obtained by A.K. Zvonkin and published here
for the first time; also due to him are examples of "live ducks". The
exponential asymptotic of ducks (§3.3) was obtained by Benoit; he
introduced the entry-exit function, as well as tunnels, funnels, and showers
(see [17] -[19]). The "life of ducks is short" theorem is due to Callot; the
principal method of obtaining these results, the so-called "exponential
microscope", was proposed by F. Diener. Cycle-ducks for the van der Pol
equation were studied in detail in [19], from which we have borrowed all
the results of §4.3 (except the second proof of the existence of cycles,
which is due to Zvonkin). The example in §4.4 was studied in [34]. The
proofs of Theorems 4.1 and 4.2 about the existence of duck-cycles and
ducks in the case of any isolated (including degenerate) extremum point are
due to Shubin and are published here for the first time (but the reference to
the existence of ducks in the case of a degenerate extremum point occurs in
[34]).

The proof in §4 of Theorem 4.1 about the existence of duck-cycles is
based on the use of Poincare's successor function. Note that for the
van der Pol equation this idea is used in [19] for the same purpose;
however, we think that the proof of the existence of duck-cycles in [19] is
incomplete, since, firstly, it does not even mention that the successor
function may not be defined everywhere, and, secondly, it assumes implicitly
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continuity of the successor function at the singular point, which does not
happen for all values of a (this continuity depends on the character of the
singular point).

5.3. We make some brief remarks about those papers that have not been
mentioned in this survey.

In [20] Benoit and Lobry study the first example of a duck for a three-
dimensional system.

In [22] and [23], Callot considers the following problem. The equation
x — tx + ax = 0 for integral a has as a particular solution a polynomial
(namely, an Hermite polynomial); all the other solutions of this equation
grow exponentially. How can such different asymptotics for the solutions
coexist? By means of a macroscope, that is, compression of the scale by an
infinitely large factor, the author reduces the question to the study of one
specific class of ducks. In the paper by Troesch [45] the macroscope is
used to prove the boundedness of solutions of the van der Pol equation.

The Lienard plane has an advantage over the phase plane in that on the
Lienard plane the cycles can be "seen entirely", whereas on the phase plane
part of a cycle goes into the invisible (to us) domain of infinitely large
values of the variables. In [25], [28], [29] F. Diener constructs the so-
called "plane of observability", which has the same property as the Lienard
plane, but is suitable for a wider class of equations.

In [34] M. Diener studies ducks for the general class of systems

ζ = ε-»/(χ: y, a),

y=g{x, y, a).

In particular, he treats ducks in the neighbourhood of points of self-
intersection (Morse points) of the slow curve f(x, y, a) = 0; an example of
this situation is considered in [33].

In a paper by Harthong [35] a mathematical theory of moire strips is
constructed. The thesis [36] is devoted to applications of non-standard
analysis to partial differential equations. One example of such an application
is given in [3]. In [37] wave fronts and wave packets for the Schrodinger
equation are studied.

In [39], [40], [42] boundary-value problems for ordinary differential
equations with a small parameter are studied.

In his thesis [44] Troesch studies the qualitative behaviour of a four-
dimensional system of differential equations corresponding to two connected
van der Pol oscillators. Interesting multidimensional problems with a small
parameter are also discussed in papers by Takens [60] -[62] and Chentsova
[59]. A number of important problems in the theory of relaxation
oscillations is studied in the book by Mishchenko and Rozov [58]. (In
particular, one can find there a complete asymptotic expansion of the period
of the large cycle in powers of the small parameter ε.)
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Some interesting specific examples of equations or classes of equations are
considered in [25] - [ 2 8 ] , [30], [38], [50].

To conclude this short survey we note that many of the papers on the
topics in question are published only in the form of preprints (mainly,
Publications IRMA), and not by any means all of them were available to the
authors of the present article.

After this article was sent to press, there appeared the paper by Eckhaus
[78] and the collection of papers [79]. In [78], in particular, there is a
standard account of some results concerning ducks.
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Remark added in proof

Recently S.N. Samborskii obtained for a multidimensional rapid-slow field with one
rapid variable and for a curve consisting of two pieces of solutions of a degenerate system
on the slow manifold, the first of which moves over the stable part of the slow manifold,
and the second over its unstable part, necessary and sufficient conditions for obtaining an
infinitely small perturbation of the field, so that this field has a duck whose shadow
coincides with the given curve.
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