Toward a Distributed Computational Steering Environment based on CORBA

O. Coulaud, M. Dussere and <u>A. Esnard</u> *ParCO 2003 – Desden (Germany), september 2003.*

EPSN project, french ACI-GRID initiative (grant number PPL02-03) INRIA Futurs (ScAIApplix project) and LaBRI (UMR CNRS 5800) 351, cours de la Libération, F-33405 Talence, France.

Outline

- 1. Introduction to Computational Steering
- 2. Overview of the EPSN Environment
- 3. Sequential Architecture and Parallel Extension
- 4. Steering System Design
- 5. Performance Evaluation
- 6. Conclusion and Prospects

Introduction to Computational Steering

Scientific Simulation

Scientific visualization plays a central role in the analysis of data generated by scientific simulations.

Ŕ

Batch

- ▷ a sequential work-flow
- visualization as a postprocessing step

Computational steering

- "to close the loop"
- ▷ a more interactive approach

What is Computational Steering?

1. J. Mulder, J. Wijk, R. Liere – 1999.

"Computational steering can be defined as the *interactive* control over a computational process."

2. J. Vetter, K. Schwan – 1996.

"Computational steering is the <u>run-time</u> control of an application and of the resources it uses for purposes of experimenting with application parameters or improving application performance."

3. S. Parker, D. Beazley, C. Johnson – 1996.

"Computational steering (...) allows the efficient extraction of scientific information and permits changes to simulation parameters and data in a meaningful way."

Software Environnement

Three main components:

- ▷ a numerical simulation
- a steering system (remote user interface for monitoring & steering)
- a communication infrastructure

Monitoring: observation of the program's behavior during execution
 Steering: modification of the program's behavior during execution

Ŕ

How to integrate steering functionnalities in an existing simulation?

- Debugger approach
- Interaction through standard I/O (CaveStudy)
- Scripting languages (SWIG)
 - \rightarrow light weight steering
- Problem solving environment (SCIRUN, COVISE)
 - \rightarrow construct new steering applications, visual programming
- Program instrumentation (CUMULVS, Falcon, VIPER...)
 - ightarrow small modification in the source (subroutine calls)

How to exchange data over heterogeneous distributed environment?

Low-level communication infrastructure:

- ▷ TCP/IP sockets (POSSE, COVISE, Visit)
- ▷ RPC (VIPER)
- XDR for heteregeneous data transfer (VIPER)

High-level communication infrastructure:

- DataExchange (Magellan, Progress, Falcon, MOSS)

 An event system which allows heterogeneous data transfer
- Nexus (CAVEStudy)
 - \rightarrow the GLOBUS communication layer

▷ PVM (CUMULVS)

The EPSN Environment

Our goals:

- ▶ to develop a software environment for computational steering \rightarrow control, data exploration and modification
- ▹ to support heterogeneous distributed system
- ▹ to achieve good performances (few perturbations on computation)

Our approach:

- ▶ a programming model based on source code instrumentation
- a communication infrastructure based on <u>CORBA</u>
- a generic coupling based on an <u>abstract representation</u> of the simulation

Overview

Features:

- ▷ a client/server approach
 - \rightarrow simulation = server, steering system = client
- a distributed and dynamic infrastructure
 - \rightarrow multi-clients & multi-applications
- a client request approach (different from the event system approach)

Target Simulations:

- existing C/C++/Fortran simulation code
- iterative processes
- ▷ sequential \rightarrow parallel simulation (SPMD) \rightarrow coupled simulation \rightarrow distributed simulation (MPMD)

XML Description

- simulation scheme as a hierarchy of computational loops
- ▷ set of breakpoints \rightarrow *id*, *state*, *location*...
- ▷ data description (scalar, sequence) and access permissions \rightarrow *id, type, location, distribution, ...*
- group of logically correlated data

Source code annotation

- b data publication, data memory address (publish)
- locate breakpoints at stable points (barrier)
- ▷ restricted access area (lock/unlock) → data coherency
- data release management (release)
- loop timestep evolution (iterate)

Steering Principles

Control

play/step/stop

On-the-fly data access

- b data extraction (get/wait)
- data modification (put)
- callback function at reception

"Systematic" data extraction

 \triangleright automatically sending new data releases (simulation \rightarrow client)

Ŕ

- registration request (getp/cancelp)
- acknowledgment system for frequency regulation
- "on-line" visualization

A Simple Example

XML Description

```
<simulation name="spray" context="parallel">
  <control running="true">
   <breakpoint id="begin" state="down" location="specific"/>
   <loop id="loop" state="up"/>
   <breakpoint id="end" location="distributed"/>
  </control>
  <data>
   <qroup id="mesh">
     <scalar id="nbNodes" type="long"</pre>
                                         access="readonly" location="replicated"/>
     <scalar id="nbCells" type="long"</pre>
                                         access="readonly" location="replicated"/>
     <sequence id="nodes" type="double" location="replicated">
       <dimension size="nbNodes"/>
       <dimension size="2"/>
     </sequence>
     <sequence id="cells" type="long"</pre>
                                         location="replicated">
       <dimension size="nbCells"/>
       <dimension offset="1" size="3" alloc="5"/>
     </sequence>
     <sequence id="energy" type="double" location="distributed">
       <dimension size="nbNodes" decomposition="block"/>
     </sequence>
   </group>
  </data>
</simulation>
```

Ŕ

Instrumentation (1/2)

// MPI Initialization

```
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&nbProcs);
MPI_Comm_rank(MPI_COMM_WORLD,&numProc);
```

// Epsilon Initialization

```
epsilon_init("spray.xml",numProc,nbProcs);
epsilon_publish("nbNodes",&mesh->nbNodes);
epsilon_publish("nbCells",&mesh->nbCells);
epsilon_publish("nodes",mesh->nodes);
epsilon_publish("cells",mesh->cells);
epsilon_publish("energy",mesh->energy);
epsilon_publishgroup("mesh");
epsilon_unlockall();
```

```
// Barrier on master process
if(numproc == 0) { epsilon_barrier("begin");}
```

Instrumentation (2/2)

```
MPI_Barrier(MPI_COMM_WORLD);
```

```
// Computation Loop
for(int kt = 0; kt < ktmax; kt++){
    epsilon_flush("energy");</pre>
```

```
// fluid injection
inject(mesh,energy_buffer);
epsilon_lock("energy");
copy(mesh->energy,energy_buffer);
epsilon_unlock("energy");
epsilon_release("energy");
// Post Processing & MPI communication
postprocessing(mesh);
epsilon_iterate("loop");
```

Ŕ

```
epsilon_barrier("end");
// Simulation Ending
WriteResult(mesh);
// Epsilon Finalization
epsilon_exit();
```

}

Architecture

The Choice of CORBA

CORBA features:

- advanced programming model
- design for distributed communication
- CDR for heterogeneous data transfer
- portability, network transparency, interoperability

Requirements for HPC:

- ▶ efficiency on high-speed networks → OmniORB, TAO, PADICO
- ▷ parallelism support \rightarrow OMG, PARDIS, PACO++

Requirements for EPSN:

- hiding the inherent complexity of CORBA to the end-user
- ▷ imperative languages (Fortran, C)

Communication Infratructure

- a CORBA server started in a dedicated thread
- a CORBA thread pool for the steering treatments
- thread synchronization based on semaphores and signals
- data access through shared memory (zero copy)
- asynchronous communication (*oneway* CORBA request)
- communication overlapping

The Whole Infratructure

EPSN Parallel Extension

Parallel CORBA Objects with PaCO++

Paris Project (IRISA)

- collection of identical CORBA objects
- \triangleright no modification of the CORBA specifications \rightarrow portable
- communication thanks to an external mechanism (MPI)

Ŕ

data distribution transparency (XML description)

Ŕ

- instrumentation of each simulation process
- synchronization mechanisms

EPSN Steering System

Steering System Design

Multiple strategies to interact with your simulation.

Ŕ

EPSN Generic Client

<i>Ձ</i> B 00 😐 ▶ 🔍	Any Barrier				• *	* *
fingerprint propag						
mesh	[0]	[1]	[2]	[3]		1000
nb_atomes	16.864	14.059	3.442	1.5		-
nb_cells	16.007	14.241	3.093	12		
nb nodes	17.087	14.8	3.997	📋 Visualization Plu	ıg-In	d" 🗹
nodes	17.481	14.013	2.75			
	16.868	12.814	4.233			
radius	16.94	12.048	3.605			
spheres	18.117	11.578	6.092			~ 1
xyz_atomes	17.94	10.768	5.54 6.531			$\sim 1 \Lambda_{\odot}$
id : spheres		12.892	4.38			
label :	19.233	13.553	4.58			
type class : sequence	15.438	10.82	4.856			
access mode : readwrite	11.919	10.668	5.811			- 1
base type : double	12.269	11.573	3.957			1 8
type code : EpsilonDoubleSeq	11.95	12,485	4.227			
buffer size : 2568	13.054	11.692	3.362			
dimension : [642][4]	13.216	9.504	4.842		A CONTRACTOR OF STREET, STREET	
	13.26	9.363	3.966			
	14.981	9.844	7.352		And Street, St	A F
	7.322	9.733	14.055			
	6.681	10,453	13.977			ALLS
fingerprint: iteration 1, sto	op on barrie	r deflation	1			

- implemented in Java/Swing
- control and data access of any EPSN simulation
- presenting data through simple numerical data-sheets and basic visualization plug-ins

AVS/Express Semi-Generic Client

- visual programming model (dataflow oriented)
- EPSN generic module (data extraction and configuration)
- visualization of complex objects (meshes, molecules, etc.)

Performance Evaluation of the Sequential Prototype

Communication

Data Extraction from a Simulation

Toward a Distributed Computational Steering Environment based on CORBA - p.31/38

Conclusion & Prospects

Conclusion:

- a first step toward a computational steering environment
- XML description + source code annotations
- communication infrastructure based on CORBA
- first development for SPMD simulation with regular data distribution
- several strategies to implement steering clients
- encouraging performances with the sequential prototype

Prospects:

- PaCO++ full integration
- irregular data distribution on SPMD
- extension to distributed application (MPMD)

THE END.

Questions?

Appendix

Get Request

R

Getp Request

Ŕ

Performance Comparison

Toward a Distributed Computational Steering Environment based on CORBA - p.38/38