
Toward a Distributed Computational Steering
Environment based on CORBA

O. Coulaud, M. Dussere and A. Esnard

ParCO 2003 – Desden (Germany), september 2003.

EPSN project, french ACI-GRID initiative (grant number PPL02-03)

INRIA Futurs (ScAlApplix project) and LaBRI (UMR CNRS 5800)

351, cours de la Libération, F-33405 Talence, France.

Toward a Distributed Computational Steering Environment based on CORBA – p.1/38

Outline

1. Introduction to Computational Steering

2. Overview of the EPSN Environment

3. Sequential Architecture and Parallel Extension

4. Steering System Design

5. Performance Evaluation

6. Conclusion and Prospects

Toward a Distributed Computational Steering Environment based on CORBA – p.2/38

Introduction to Computational
Steering

Toward a Distributed Computational Steering Environment based on CORBA – p.3/38

Scientific Simulation

Scientific visualization plays a central role in the analysis of data
generated by scientific simulations.

MODELISATION

VISUALIZATION SIMULATION

batch
runtime interaction

Batch

� a sequential work-flow

� visualization as a post-
processing step

Computational steering

� “to close the loop”

� a more interactive approach

Toward a Distributed Computational Steering Environment based on CORBA – p.4/38

What is Computational Steering?

1. J. Mulder, J. Wijk, R. Liere – 1999.
“Computational steering can be defined as the interactive control
over a computational process.”

2. J. Vetter, K. Schwan – 1996.
“Computational steering is the run-time control of an application
and of the resources it uses for purposes of experimenting with
application parameters or improving application performance.”

3. S. Parker, D. Beazley, C. Johnson – 1996.
“Computational steering (...) allows the efficient extraction of
scientific information and permits changes to simulation
parameters and data in a meaningful way.”

Toward a Distributed Computational Steering Environment based on CORBA – p.5/38

Software Environnement

Three main components:

� a numerical simulation

� a steering system (remote user interface for monitoring & steering)

� a communication infrastructure

� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �

Simulation

Communication Infrastructure

Steering System

Human

visualisation/interaction

�

Monitoring: observation of the program’s behavior during execution

�

Steering: modification of the program’s behavior during execution

Toward a Distributed Computational Steering Environment based on CORBA – p.6/38

Steering Programming Model

How to integrate steering functionnalities in an existing simulation?

� Debugger approach

� Interaction through standard I/O (CaveStudy)

� Scripting languages (SWIG)

� light weight steering

� Problem solving environment (SCIRUN, COVISE)

� construct new steering applications, visual programming

� Program instrumentation (CUMULVS, Falcon, VIPER...)

� small modification in the source (subroutine calls)

Toward a Distributed Computational Steering Environment based on CORBA – p.7/38

Communication Infrastructure

How to exchange data over heterogeneous distributed environment?

Low-level communication infrastructure:

� TCP/IP sockets (POSSE, COVISE, Visit)

� RPC (VIPER)

� XDR for heteregeneous data transfer (VIPER)

High-level communication infrastructure:

� DataExchange (Magellan, Progress, Falcon, MOSS)

� an event system which allows heterogeneous data transfer

� Nexus (CAVEStudy)

� the GLOBUS communication layer

� PVM (CUMULVS)

Toward a Distributed Computational Steering Environment based on CORBA – p.8/38

The EPSN Environment

Toward a Distributed Computational Steering Environment based on CORBA – p.9/38

Overview

Our goals:

� to develop a software environment for computational steering

� control, data exploration and modification

� to support heterogeneous distributed system

� to achieve good performances (few perturbations on computation)

Our approach:

� a programming model based on source code instrumentation

� a communication infrastructure based on CORBA

� a generic coupling based on an abstract representation of the
simulation

Toward a Distributed Computational Steering Environment based on CORBA – p.10/38

Overview

Features:

� a client/server approach

� simulation = server, steering system = client

� a distributed and dynamic infrastructure

� multi-clients & multi-applications

� a client request approach (different from the event system
approach)

Target Simulations:

� existing C/C++/Fortran simulation code

� iterative processes

� sequential � parallel simulation (SPMD) � coupled simulation �

distributed simulation (MPMD)

Toward a Distributed Computational Steering Environment based on CORBA – p.11/38

Instrumentation Principles

XML Description

� simulation scheme as a hierarchy of computational loops

� set of breakpoints � id, state, location...

� data description (scalar, sequence) and access permissions

� id, type, location, distribution, ...

� group of logically correlated data

Source code annotation

� data publication, data memory address (publish)

� locate breakpoints at stable points (barrier)

� restricted access area (lock/unlock) � data coherency

� data release management (release)

� loop timestep evolution (iterate)

Toward a Distributed Computational Steering Environment based on CORBA – p.12/38

Steering Principles

Control

� play/step/stop

On-the-fly data access

� data extraction (get/wait)

� data modification (put)

� callback function at reception

“Systematic” data extraction

� automatically sending new data releases (simulation � client)

� registration request (getp/cancelp)

� acknowledgment system for frequency regulation

� “on-line” visualization

Toward a Distributed Computational Steering Environment based on CORBA – p.13/38

A Simple Example

Toward a Distributed Computational Steering Environment based on CORBA – p.14/38

XML Description

<simulation name="spray" context="parallel">
<control running="true">
<breakpoint id="begin" state="down" location="specific"/>
<loop id="loop" state="up"/>
<breakpoint id="end" location="distributed"/>

</control>

<data>
<group id="mesh">
<scalar id="nbNodes" type="long" access="readonly" location="replicated"/>
<scalar id="nbCells" type="long" access="readonly" location="replicated"/>
<sequence id="nodes" type="double" location="replicated">

<dimension size="nbNodes"/>
<dimension size="2"/>

</sequence>
<sequence id="cells" type="long" location="replicated">

<dimension size="nbCells"/>
<dimension offset="1" size="3" alloc="5"/>

</sequence>
<sequence id="energy" type="double" location="distributed">

<dimension size="nbNodes" decomposition="block"/>
</sequence>

</group>
</data>

</simulation>

Toward a Distributed Computational Steering Environment based on CORBA – p.15/38

Instrumentation (1/2)

// Mesh Initialization
struct Mesh

�

int nbNodes; int nbCells; int ** nodes;

int ** cells; double * energy;

�

* mesh;
InitMeshFromFile(mesh,"file");

// MPI Initialization
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&nbProcs);
MPI_Comm_rank(MPI_COMM_WORLD,&numProc);

// Epsilon Initialization
epsilon_init("spray.xml",numProc,nbProcs);
epsilon_publish("nbNodes",&mesh->nbNodes);
epsilon_publish("nbCells",&mesh->nbCells);
epsilon_publish("nodes",mesh->nodes);
epsilon_publish("cells",mesh->cells);
epsilon_publish("energy",mesh->energy);
epsilon_publishgroup("mesh");
epsilon_unlockall();

// Barrier on master process
if(numproc == 0)

�

epsilon_barrier("begin");

�

Toward a Distributed Computational Steering Environment based on CORBA – p.16/38

Instrumentation (2/2)

MPI_Barrier(MPI_COMM_WORLD);

// Computation Loop
for(int kt = 0; kt < ktmax; kt++)

�

epsilon_flush("energy");

// fluid injection
inject(mesh,energy_buffer);
epsilon_lock("energy");
copy(mesh->energy,energy_buffer);
epsilon_unlock("energy");
epsilon_release("energy");
// Post Processing & MPI communication
postprocessing(mesh);
epsilon_iterate("loop");

�

epsilon_barrier("end");
// Simulation Ending
WriteResult(mesh);
// Epsilon Finalization
epsilon_exit();

Toward a Distributed Computational Steering Environment based on CORBA – p.17/38

Architecture

Toward a Distributed Computational Steering Environment based on CORBA – p.18/38

The Choice of CORBA

CORBA features:

� advanced programming model

� design for distributed communication

� CDR for heterogeneous data transfer

� portability, network transparency, interoperability

Requirements for HPC:

� efficiency on high-speed networks � OmniORB, TAO, PADICO

� parallelism support � OMG, PARDIS, PACO++

Requirements for EPSN:

� hiding the inherent complexity of CORBA to the end-user

� imperative languages (Fortran, C)

Toward a Distributed Computational Steering Environment based on CORBA – p.19/38

Communication Infratructure

O
b

je
ct

 R
eq

u
es

t
B

ro
ke

r

C
O

R
B

A
C

O
R

B
A

cl
ie

n
t

se
rv

er

inter−thread signals

CORBA request

steerable simulation

co
re

computation loop

simulation side

process thread

C
O

R
B

A
 s

tu
b

s
&

 s
ke

le
to

n
s

si
m

u
la

ti
o

n
 in

te
rf

ac
e

si
m

u
la

ti
o

n
 A

P
I

� a CORBA server started in a dedicated thread

� a CORBA thread pool for the steering treatments

� thread synchronization based on semaphores and signals

� data access through shared memory (zero copy)

� asynchronous communication (oneway CORBA request)

� communication overlapping

Toward a Distributed Computational Steering Environment based on CORBA – p.20/38

The Whole Infratructure

O
b

je
ct

 R
eq

u
es

t
B

ro
ke

r

C
O

R
B

A
C

O
R

B
A

cl
ie

n
t

se
rv

er

C
O

R
B

A
C

O
R

B
A

cl
ie

n
t

se
rv

er

steerable simulation

co
re

co
re

process process

inter−thread signals

supercomputer

computation loop

graphical station

visualization loop

steering clientsimulation side client side

CORBA request

thread thread
C

O
R

B
A

 s
tu

b
s

&
 s

ke
le

to
n

s

C
O

R
B

A
 s

tu
b

s
&

 s
ke

le
to

n
s

si
m

u
la

ti
o

n
 in

te
rf

ac
e

cl
ie

n
t

A
P

I

si
m

u
la

ti
o

n
 A

P
I

cl
ie

n
t

in
te

rf
ac

e

Toward a Distributed Computational Steering Environment based on CORBA – p.21/38

EPSN Parallel Extension

Toward a Distributed Computational Steering Environment based on CORBA – p.22/38

Parallel CORBA Objects with PaCO++

Paris Project (IRISA)

� collection of identical CORBA objects

� no modification of the CORBA specifications � portable

� communication thanks to an external mechanism (MPI)

� data distribution transparency (XML description)

Toward a Distributed Computational Steering Environment based on CORBA – p.23/38

Parallel Architecture Overview

E
P

S
N

Sequential

Client

Sequential

Client

E
P

S
N

User Communication Layer (MPI)

P
ar

al
le

l S
im

u
la

ti
o

n

E
P

S
N

SPMD

E
P

S
N

SPMD

E
P

S
N

SPMD

E
P

S
N

SPMD

Paco++ Internal Communication Layer

Object Request Broker

� instrumentation of each simulation process

� synchronization mechanisms

Toward a Distributed Computational Steering Environment based on CORBA – p.24/38

EPSN Steering System

Toward a Distributed Computational Steering Environment based on CORBA – p.25/38

Steering System Design

Multiple strategies to interact with your simulation.

Perl/Python
WRAPPED LIBRARY

C/C++
EPSN CLIENT LIBRARY

CORBA INTERFACE (IDL)

USER SCRIPT
SEMI−GENERIC

CLIENT

GENERIC
MODULE

GENERIC CLIENT

USER LEVEL

EPSN LEVEL

INTERMEDIATE LEVEL

AVS/Express

AVS/Express

Java

OpenGL/OpenInventor/VTK

SPECIFIC CLIENT

Toward a Distributed Computational Steering Environment based on CORBA – p.26/38

EPSN Generic Client

� implemented in Java/Swing

� control and data access of any EPSN simulation

� presenting data through simple numerical data-sheets and basic
visualization plug-ins

Toward a Distributed Computational Steering Environment based on CORBA – p.27/38

AVS/Express Semi-Generic Client

� visual programming model (dataflow oriented)

� EPSN generic module (data extraction and configuration)

� visualization of complex objects (meshes, molecules, etc.)

Toward a Distributed Computational Steering Environment based on CORBA – p.28/38

Performance Evaluation
of the

Sequential Prototype

Toward a Distributed Computational Steering Environment based on CORBA – p.29/38

Communication

0

50

100

150

200

250

300

350

400

450

500

1 8 64 512 4096

tim
e

(m
s)

size (Kb)

Epsilon (local client)
Epsilon (remote client)

TCP/IP

Toward a Distributed Computational Steering Environment based on CORBA – p.30/38

Data Extraction from a Simulation

0

50

100

150

200

250

300

350

400

450

500

1 8 64 512 4096

tim
e

(m
s/

ite
r)

size (Kb)

Simulation (80ms/iter)
Simulation + TCP/IP

Simulation + Epsilon (remote client)

Toward a Distributed Computational Steering Environment based on CORBA – p.31/38

Conclusion & Prospects

Conclusion:

� a first step toward a computational steering environment

� XML description + source code annotations

� communication infrastructure based on CORBA

� first developement for SPMD simulation with regular data
distribution

� several strategies to implement steering clients

� encouraging performances with the sequential prototype

Prospects:

� PaCO++ full integration

� irregular data distribution on SPMD

� extension to distributed application (MPMD)

Toward a Distributed Computational Steering Environment based on CORBA – p.32/38

THE END.

Toward a Distributed Computational Steering Environment based on CORBA – p.33/38

Questions?

O
b

je
ct

 R
eq

u
es

t
B

ro
ke

r

C
O

R
B

A
C

O
R

B
A

cl
ie

n
t

se
rv

er

C
O

R
B

A
C

O
R

B
A

cl
ie

n
t

se
rv

er

steerable simulation

co
re

co
re

process process

inter−thread signals

supercomputer

computation loop

graphical station

visualization loop

steering clientsimulation side client side

CORBA request

thread thread

C
O

R
B

A
 s

tu
b

s
&

 s
ke

le
to

n
s

C
O

R
B

A
 s

tu
b

s
&

 s
ke

le
to

n
s

si
m

u
la

ti
o

n
 in

te
rf

ac
e

cl
ie

n
t

A
P

I

si
m

u
la

ti
o

n
 A

P
I

cl
ie

n
t

in
te

rf
ac

e
0

50

100

150

200

250

300

350

400

450

500

1 8 64 512 4096

tim
e

(m
s/

ite
r)

size (Kb)

Simulation (80ms/iter)
Simulation + TCP/IP

Simulation + Epsilon (remote client)

Toward a Distributed Computational Steering Environment based on CORBA – p.34/38

Appendix

Toward a Distributed Computational Steering Environment based on CORBA – p.35/38

Get Request

signal

wait

CORBA request R: reading data

W: writing data

simulation

thread pool

thread pool

client

refC : CORBA reference on client

refS : CORBA reference on simulation

lock(id)

unlock(id)get(id)

re
fC

.s
en

d
(i

d
,d

at
a)

unlock(id)

unlock(id)

get(id)

re
fC

.s
en

d
(i

d
,d

at
a)

get(id)

unlock(id)

re
fC

.s
en

d
(i

d
,d

at
a)

lock(id)wait(id)

re
fS

.g
et

(i
d

,r
ef

C
)

re
fS

.g
et

(i
d

,r
ef

C
)

re
fS

.g
et

(i
d

,r
ef

C
)

W
W W

R R R

Toward a Distributed Computational Steering Environment based on CORBA – p.36/38

Getp Request

refC : CORBA reference on client

refS : CORBA reference on simulation

signal

wait

CORBA request

cancelp(id)

simulation

thread pool

lock(id) unlock(id)getp(id)

unlock(id) release(id) flush(id) release(id) flush(id)

thread pool

client

re
fS

.g
et

p
(i

d
,r

ef
C

)

re
fC

.s
en

d
(i

d
,d

at
a)

re
fC

.s
en

d
(i

d
,d

at
a)

re
fS

.a
ck

p
(i

d
)

re
fS

.c
an

ce
lp

(i
d

,r
ef

C
)

re
fS

.a
ck

p
(i

d
)

R R

R: reading data

W: writing data

C: callback

CCCCC CCCCC

Toward a Distributed Computational Steering Environment based on CORBA – p.37/38

Performance Comparison

0

100

200

300

400

500

600

700

800

1 8 64 512 4096

tim
e

(m
s/

ite
r)

size (Kb)

Simulation (80ms/iter)
Simulation + TCP/IP

Simulation + Epsilon (1 remote client)
Simulation + Epsilon (2 remote clients)
Simulation + Cumulvs (1 remote client)

Toward a Distributed Computational Steering Environment based on CORBA – p.38/38

	Outline
	
	Scientific Simulation
	What is Computational Steering?
	Software Environnement
	Steering Programming Model
	Communication Infrastructure
	
	Overview
	Overview
	Instrumentation Principles
	Steering Principles
	
	XML Description
	Instrumentation (1/2)
	Instrumentation (2/2)
	
	The Choice of CORBA
	Communication Infratructure
	The Whole Infratructure
	
	Parallel CORBA Objects with PaCO++
	Parallel Architecture Overview
	
	Steering System Design
	EPSN Generic Client
	AVS/Express Semi-Generic Client
	
	Communication
	Data Extraction from a Simulation
	Conclusion & Prospects
	
	Questions?
	
	Get Request
	Getp Request
	Performance Comparison

