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Introduction to Computational
Steering
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Scientific Simulation

Scientific visualization plays a central role in the analysis of data
generated by scientific simulations.

MODELISATION

VISUALIZATION SIMULATION

batch
runtime interaction

Batch

� a sequential work-flow

� visualization as a post-
processing step

Computational steering

� “to close the loop”

� a more interactive approach

Toward a Distributed Computational Steering Environment based on CORBA – p.4/38



What is Computational Steering?

1. J. Mulder, J. Wijk, R. Liere – 1999.
“Computational steering can be defined as the interactive control
over a computational process.”

2. J. Vetter, K. Schwan – 1996.
“Computational steering is the run-time control of an application
and of the resources it uses for purposes of experimenting with
application parameters or improving application performance.”

3. S. Parker, D. Beazley, C. Johnson – 1996.
“Computational steering (...) allows the efficient extraction of
scientific information and permits changes to simulation
parameters and data in a meaningful way.”
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Software Environnement

Three main components:

� a numerical simulation

� a steering system (remote user interface for monitoring & steering)

� a communication infrastructure

� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �

Simulation

Communication Infrastructure

Steering System

Human

visualisation/interaction

�

Monitoring: observation of the program’s behavior during execution

�

Steering: modification of the program’s behavior during execution
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Steering Programming Model

How to integrate steering functionnalities in an existing simulation?

� Debugger approach

� Interaction through standard I/O (CaveStudy)

� Scripting languages (SWIG)

� light weight steering

� Problem solving environment (SCIRUN, COVISE)

� construct new steering applications, visual programming

� Program instrumentation (CUMULVS, Falcon, VIPER...)

� small modification in the source (subroutine calls)
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Communication Infrastructure

How to exchange data over heterogeneous distributed environment?

Low-level communication infrastructure:

� TCP/IP sockets (POSSE, COVISE, Visit)

� RPC (VIPER)

� XDR for heteregeneous data transfer (VIPER)

High-level communication infrastructure:

� DataExchange (Magellan, Progress, Falcon, MOSS)

� an event system which allows heterogeneous data transfer

� Nexus (CAVEStudy)

� the GLOBUS communication layer

� PVM (CUMULVS)
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The EPSN Environment
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Overview

Our goals:

� to develop a software environment for computational steering

� control, data exploration and modification

� to support heterogeneous distributed system

� to achieve good performances (few perturbations on computation)

Our approach:

� a programming model based on source code instrumentation

� a communication infrastructure based on CORBA

� a generic coupling based on an abstract representation of the
simulation
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Overview

Features:

� a client/server approach

� simulation = server, steering system = client

� a distributed and dynamic infrastructure

� multi-clients & multi-applications

� a client request approach (different from the event system
approach)

Target Simulations:

� existing C/C++/Fortran simulation code

� iterative processes

� sequential � parallel simulation (SPMD) � coupled simulation �

distributed simulation (MPMD)
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Instrumentation Principles

XML Description

� simulation scheme as a hierarchy of computational loops

� set of breakpoints � id, state, location...

� data description (scalar, sequence) and access permissions

� id, type, location, distribution, ...

� group of logically correlated data

Source code annotation

� data publication, data memory address (publish)

� locate breakpoints at stable points (barrier)

� restricted access area (lock/unlock) � data coherency

� data release management (release)

� loop timestep evolution (iterate)
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Steering Principles

Control

� play/step/stop

On-the-fly data access

� data extraction (get/wait)

� data modification (put)

� callback function at reception

“Systematic” data extraction

� automatically sending new data releases (simulation � client)

� registration request (getp/cancelp)

� acknowledgment system for frequency regulation

� “on-line” visualization
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A Simple Example
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XML Description

<simulation name="spray" context="parallel">
<control running="true">
<breakpoint id="begin" state="down" location="specific"/>
<loop id="loop" state="up"/>
<breakpoint id="end" location="distributed"/>

</control>

<data>
<group id="mesh">
<scalar id="nbNodes" type="long" access="readonly" location="replicated"/>
<scalar id="nbCells" type="long" access="readonly" location="replicated"/>
<sequence id="nodes" type="double" location="replicated">

<dimension size="nbNodes"/>
<dimension size="2"/>

</sequence>
<sequence id="cells" type="long" location="replicated">

<dimension size="nbCells"/>
<dimension offset="1" size="3" alloc="5"/>

</sequence>
<sequence id="energy" type="double" location="distributed">

<dimension size="nbNodes" decomposition="block"/>
</sequence>

</group>
</data>

</simulation>
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Instrumentation (1/2)

// Mesh Initialization
struct Mesh

�

int nbNodes; int nbCells; int ** nodes;

int ** cells; double * energy;

�

* mesh;
InitMeshFromFile(mesh,"file");

// MPI Initialization
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&nbProcs);
MPI_Comm_rank(MPI_COMM_WORLD,&numProc);

// Epsilon Initialization
epsilon_init("spray.xml",numProc,nbProcs);
epsilon_publish("nbNodes",&mesh->nbNodes);
epsilon_publish("nbCells",&mesh->nbCells);
epsilon_publish("nodes",mesh->nodes);
epsilon_publish("cells",mesh->cells);
epsilon_publish("energy",mesh->energy);
epsilon_publishgroup("mesh");
epsilon_unlockall();

// Barrier on master process
if(numproc == 0)

�

epsilon_barrier("begin");

�
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Instrumentation (2/2)

MPI_Barrier(MPI_COMM_WORLD);

// Computation Loop
for(int kt = 0; kt < ktmax; kt++)

�

epsilon_flush("energy");

// fluid injection
inject(mesh,energy_buffer);
epsilon_lock("energy");
copy(mesh->energy,energy_buffer);
epsilon_unlock("energy");
epsilon_release("energy");
// Post Processing & MPI communication
postprocessing(mesh);
epsilon_iterate("loop");

�

epsilon_barrier("end");
// Simulation Ending
WriteResult(mesh);
// Epsilon Finalization
epsilon_exit();
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Architecture
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The Choice of CORBA

CORBA features:

� advanced programming model

� design for distributed communication

� CDR for heterogeneous data transfer

� portability, network transparency, interoperability

Requirements for HPC:

� efficiency on high-speed networks � OmniORB, TAO, PADICO

� parallelism support � OMG, PARDIS, PACO++

Requirements for EPSN:

� hiding the inherent complexity of CORBA to the end-user

� imperative languages (Fortran, C)
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Communication Infratructure
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� a CORBA server started in a dedicated thread

� a CORBA thread pool for the steering treatments

� thread synchronization based on semaphores and signals

� data access through shared memory (zero copy)

� asynchronous communication (oneway CORBA request)

� communication overlapping
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The Whole Infratructure
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EPSN Parallel Extension
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Parallel CORBA Objects with PaCO++

Paris Project (IRISA)

� collection of identical CORBA objects

� no modification of the CORBA specifications � portable

� communication thanks to an external mechanism (MPI)

� data distribution transparency (XML description)
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Parallel Architecture Overview
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� instrumentation of each simulation process

� synchronization mechanisms
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EPSN Steering System

Toward a Distributed Computational Steering Environment based on CORBA – p.25/38



Steering System Design

Multiple strategies to interact with your simulation.

Perl/Python
WRAPPED LIBRARY

C/C++
EPSN CLIENT LIBRARY

CORBA INTERFACE (IDL)

USER SCRIPT
SEMI−GENERIC

CLIENT

GENERIC
MODULE

GENERIC CLIENT

USER LEVEL

EPSN LEVEL

INTERMEDIATE LEVEL

AVS/Express

AVS/Express

Java

OpenGL/OpenInventor/VTK

SPECIFIC CLIENT
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EPSN Generic Client

� implemented in Java/Swing

� control and data access of any EPSN simulation

� presenting data through simple numerical data-sheets and basic
visualization plug-ins
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AVS/Express Semi-Generic Client

� visual programming model (dataflow oriented)

� EPSN generic module (data extraction and configuration)

� visualization of complex objects (meshes, molecules, etc.)
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Performance Evaluation
of the

Sequential Prototype
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Communication
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Data Extraction from a Simulation
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Conclusion & Prospects

Conclusion:

� a first step toward a computational steering environment

� XML description + source code annotations

� communication infrastructure based on CORBA

� first developement for SPMD simulation with regular data
distribution

� several strategies to implement steering clients

� encouraging performances with the sequential prototype

Prospects:

� PaCO++ full integration

� irregular data distribution on SPMD

� extension to distributed application (MPMD)
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THE END.
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Questions?
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Appendix
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Get Request

signal
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CORBA request R: reading data
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Getp Request

refC : CORBA reference on client

refS : CORBA reference on simulation

signal

wait

CORBA request

cancelp(id)

simulation

thread pool

lock(id) unlock(id)getp(id)
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thread pool
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C: callback
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Performance Comparison
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