
RedGRID: Related Works
Lyon, october 2003.

Aurélien Esnard

EPSN project (ACI-GRID PPL02-03)

INRIA Futurs (ScAlApplix project) & LaBRI (UMR CNRS 5800)

351, cours de la Libération, F-33405 Talence, France.

RedGRID, october 2003 – p.1/38



Outline

1. Introduction

2. CUMULVS

3. PAWS

4. Meta-Chaos

5. CCA MxN

6. Conclusion

RedGRID, october 2003 – p.2/38



Introduction

RedGRID, october 2003 – p.3/38



Challenges

Coupling parallel applications and sharing parallel data structures between
these codes

� efficient parallel transfer � avoid serialization bottlenecks

� using different parallel layout strategies (redistribution)

� heterogeneous data transfer (languages & systems)

� provide several synchronization strategies

� dynamic coupling of applications, at any time during their execution

RedGRID, october 2003 – p.4/38



Separation of Layout & Actual Data

Layout (data distribution)

� specification of global domain (dimensions, index space)

� specification of distribution pattern

� specification of logical process topology

Actual Data (local allocation)

� specification of the data type

� allocation of storage space (address)

� placement of process in logical process topology

� link data object to layout (including alignment of data within layout)

RedGRID, october 2003 – p.5/38



Communication Schedules

Communication Schedules (just) built from layouts on both sides

RedGRID, october 2003 – p.6/38



HPF Decomposition

Axis decomposition

� block: one block per processor ( � � �� � � ��� )

� cyclic: many blocks of same size per processor, cyclically assigned

� explicit: user-defined decomposition (index ranges per processor)

� collapsed: not decomposed along the axis

RedGRID, october 2003 – p.7/38



CUMULVS

RedGRID, october 2003 – p.8/38



Overview

CUMULVS: Collaborative Infrastructure for Interacting With Scientifics Simulations (ORNL)

� remote run-time visualization,
computational steering, checkpointing

� coupling parallel simulation and
single-process visualizer (M by 1)

� communication based on PVM

� C and Fortran API

� data fields & particle fields (explicit
coordinates)

� HPF-like distribution pattern

RedGRID, october 2003 – p.9/38



Data Decomposition

int decompId = stv decompDefine(int dataDim, int *axisType, int *axisInfo1, int *axisInfo2,
int *glb, int *gub, int prank, int *pshape);

� global domain dimension and index space (dataDim, glb, gub)

� block, cyclic, explicit or collapsed HPF decomposition per axis (axisType, axisInfo1, axisInfo2)

� processor topology (prank, pshape)

RedGRID, october 2003 – p.10/38



Data Fields

int fieldId = stv fieldDefine(void *var, char *name, int decompId, int *arrayOffset,
int *arrayDecl, int type, int *paddr, int aflag);

� local data array storage (var)

� decomposition handle (decompId)

� local data organization (arrayOffset, arrayDecl)

� type (byte, int, float, double, long...)

� logical processor address (paddr)

� remote access permissions (aflag)

RedGRID, october 2003 – p.11/38



View Fields

� multiple different views

� collection of data fields (view field group)

� different storage order (row/column major)

� different target type (e.g. double � int)

� portion of the computational space which is
collected for viewing

� vis. region

� set of upper and lower coordinate
bounds for each dimension (subset)

� cell size for each dimension (striding)

RedGRID, october 2003 – p.12/38



Communication Infrastructure

� simulations/applications uses MPI, PVM...

� CUMULVS based on PVM

� message-passing

� task & ressource management

� independant spawns � dynamic attachment of viewers

� heterogeneity (XDR)

� fault-tolerance, etc.

� periodically pass control to CUMULVS (stv sendToFE())

� synchronous calls, frequency

RedGRID, october 2003 – p.13/38



CUMULVS Classical Example

�

Simulation

// initialize myapp for CUMULVS
stv init("myapp",msgtag,nproc,nodeid);
// define data decomposition
did = stv decompDefine(...);
// define data field
fid = stv fieldDefine("myfield",...);
// define steering parameter
pid = stv paramDefine("myparam",...);

// main work loop
do

�

// execute computation
done = work(&timestep);
// pass control to CUMULVS
nparams = stv sendToFE();

�

while(!done);

�

Viewer

// attach CUMULVS viewer to myapp
stv viewer init(&viewer,mytid,"myapp",...);
// get field name description
vf = stv get view field name("myfield",viewer...);
vf->selected = stvTrue;
vf->view type = vf->field->type;
vf->view storage order = vf->field->storage order;
// set vis region bounds and cell sizes
STV_REGION_MIN(visregion,i) = vf->field->decomp->glb[i];
STV_REGION_MAX(visregion,i) = vf->field->decomp->gub[i];
STV_CELL_OF_DIM(viscell,i) = 1;
// request field from myapp
vfg = stv viewer submit field request(viewer,visregion,

viscell,freq,...);

// main vis loop

do

�
// collect data frame from myapp
cc = stv viewer receive frame(&vfg,viewer,...);
// do something here...
// acknowledgment
stv viewer send XON(vfg,viewer);

�

while(!done);

RedGRID, october 2003 – p.14/38



PAWS

RedGRID, october 2003 – p.15/38



Overview

PAWS: Parallel Application Workspace (LANL)

� coupling of parallel applications using parallel communication chanels

� a component-like model (port)

� different number of processes (M by N)

� C, C++ and F77 API

� single scalar & rectilinear parallel data

� be extensible to new, user-defined parallel distribution strategies

RedGRID, october 2003 – p.16/38



Parallel Data Representation

� any distributed dense rectilinear data

� nomenclature: representation (layout), view (actual data)

� representation: global domain G and a list of local subdomains

� ��� �

� view: a list of blocks

�� � ��� � 	�

�� � 	�
 � 	� � �� � � �

RedGRID, october 2003 – p.17/38



Illustration

representation (layout)

view (actual data)

RedGRID, october 2003 – p.18/38



Communication Infrastructure

�

channel abstraction

� port are connected, not data

� PAWS based on NEXUS (Globus communication layer)

� independant of the application’s parallel communication mechanism

� sender application & receiver application connected through PAWS Controller

� fully synchronous, partially synchronous, fully asynchronous connnections

� PAWS Controller (repository for applications, data and connections)

� query controller databases through Tcl scripting interface or PAWS API

RedGRID, october 2003 – p.19/38



PAWS Controller & Applications

Scenario

1. launch PAWS Controller and applications
(by hand or through PAWS Launcher)

2. App1 & App2 register to PAWS Controller

3. App1 & App2 register data structure (ports)

4. establish connections (through the con-
troller script interface or PAWS API)

5. PAWS Controller computes communication
schedules (from both layouts)

6. send/receive data

7. disconnects ports or app. from PAWS Con-
troller

RedGRID, october 2003 – p.20/38



PAWS Classical Example

�

Sender

// register with PAWS
paws initialize(argc,argv);
// create ports
rep = paws representation(wholeDom,myDom,myRank);
A = paws view_port("A",rep,PAWS OUT,PAWS DISTRIB);
// allocate data and create views
int * data = (int*)malloc(mySize*sizeof(int));
view = paws view(PAWS INTEGER,PAWS ROW);
paws add view block(view,data,myAllocDom,myViewDom);
// ready
paws ready();

// main work loop

do

�

// execute computation
done = work(&timestep);
// send data (synchronous)
paws send(A,view);

�

while(!done);

paws finalize();

�

Receiver

// register with PAWS
paws initialize(argc,argv);
// create ports
rep = paws representation(wholeDom,myDom,myRank);
B = paws view_port("B",rep,PAWS IN,PAWS DISTRIB);
// allocate data and create views
int * data = (int*)malloc(mySize*sizeof(int));
view = paws view(PAWS INTEGER,PAWS ROW);
paws add view block(view,data,myAllocDom,myViewDom);
// ready
paws ready();

// main work loop

do

�
// receive data (synchronous)
paws view_receive(B,view);
// do something here...

�
while(!done);

paws finalize();

RedGRID, october 2003 – p.21/38



Meta-Chaos

RedGRID, october 2003 – p.22/38



Overview

Meta-Chaos (U. Maryland)

� interoperability between different data
parallel libraries (libX & libY)

� multiple libraries can exchange data in the
same data parallel program or between
different parallel programs (Fig. 1,2)

� different number of processes, different
data organizations

� not only for distributed arrays!

� meta-library built from a set of interface
functions that every data parallel library
must export (location of distributed data)

� disadvantage: interfaces must be provided
by the original library that implements the
data structures

RedGRID, october 2003 – p.23/38



Linearization

� set of regions (region type = block of elements / set of array indices)

� copy elements from the source set to the target set

� linearization: one to one implicit mapping from the source to the destination (total ordering for
the elements)

� linearization “flattens” the data structure into one dimensional linear array

RedGRID, october 2003 – p.24/38



More Exotic Data Structures!

� linearization concept independant of the original data structure

�

no limited to multidimensional arrays!

� distributed aggregates, including pointer-based structures (trees, graphs, unstructured
meshes)

� e.g. depth-first linearization for trees

� cf. Chaos library for irregular distribution...

RedGRID, october 2003 – p.25/38



Communication Infrastructure

� communication based on MPI or PVM

� messages are aggregated

� one message is sent between each source and each destination processor

� steps needed to copy data distributed using one library to data distributed using another library

1. specify the elements to be copied (sent) from the 1st data structure, distributed by libX

2. specify the elements to be copied (received) into the 2nd data structure, distributed by libY

3. specify the correspondance (mapping) between the elements to be sent and the elements
to be received

4. build a communication schedule, by computing the locations (processors and local
addresses) of the elements in the two distributed data structures

5. perform the communication using the schedule produced in step 4

RedGRID, october 2003 – p.26/38



CCA MxN

RedGRID, october 2003 – p.27/38



CCA (Common Component Architecture)

� specification for a component environment (specifically designed for HPC)

� concepts: components, ports, and frameworks

� components interacts through well-defined interfaces (ports)

� advantages: reusable functionality, composability, well-defined interfaces, etc.

� a component may provide a port (implement the interface)

� a component may use that port (call methods in that port)

� framework holds the components and compose them into applications

RedGRID, october 2003 – p.28/38



CCA for HPC, Collective Interactions

� language interoperability (Babel, SIDL)

� parallel component: collaboration of multiple threads or processes that logically represents
one computation (user-defined communication within a parallel component)

� collective ports: collective invocation on all processes or on a proper subset (CCA extension)

� direct connections maintains local performances (a virtual function call)

RedGRID, october 2003 – p.29/38



CCA MxN Working Group

� specification interface to allow CCA components to identify and exchange data elements
among parallel, decomposed data objects

� encapsulate existing technologies: CUMULVS, PAWS, Meta-Chaos, PADRE...

� data decompositions, communication schedules, connection & synchronization protocols...

� MxN Prototypes at SC01 (cf. CUMULVS/MxN, PAWS/MxN)

� No one tool fully implements MxN!

RedGRID, october 2003 – p.30/38



MxN Interface Keypoints (2002/04)

� data registration (local information and distributed data decomposition)
All A: registerData(dataA,sync,access,handleA);
All B: registerData(dataB,sync,access,handleB);

� communication schedules (map together two parallel entities)
All A: createCommSched(dataB.decomp,dataA.decomp,handleCS);

� MxN connections (one-shot or periodic connections)
All A: makeConnection(handleB,handleA,handleCS,syncB,syncA,freqB,freqA,handleC);

� request parallel data transfer
All A:

requestTransfer(handleC,handleT);
...
waitTransfert(handleT);

� data ready (parallel consistency of data, activate local transfer)
All A:

dataReady(handleA,readwrite,flag);

All B:
dataReadyBegin(handleB,readwrite,flag);
...
dataReadyEnd(handleB);

RedGRID, october 2003 – p.31/38



MxN Data Field Proposal (2002/06)

� distributed multidimensionnal, rectangular, arrays

� nomenclature: template (layout) & descriptor (actual data)

� decomposition types: collapsed, block (regular & cyclic), genblock, implicit, explicit

� several kinds of alignment: identity, offset or general (HPF alignment)

explicit

RedGRID, october 2003 – p.32/38



MxN Data Field Proposal (2002/06)

blocks of arbitrary sizes (one per process) arbitrary mapping of elements to processes

RedGRID, october 2003 – p.33/38



MxN Prototypes

CUMULVS

� 2 frameworks solution

� DADF component (Data Array Desc. Factory)

� CumuvsMxN component

� for Viz (Mx1) and for App. (MxN)

� VizProxy component (Visualization)

PAWS
� single framework solution

� built on PAWS data description

� 2 MxN components � MxN_S for
sender and MxN_R for receiver

� 3rd party control component

RedGRID, october 2003 – p.34/38



PAWS Translation Components

� beyond MxN component for data field

� translation components (different number of processes, different distributions, dimensional flip,
column/row major, striding, compostion/decomposition)

� composing translation components

RedGRID, october 2003 – p.35/38



Conclusion

RedGRID, october 2003 – p.36/38



Summary

Library Coupling Objects Comm. Sync.

CUMULVS Mx1 rectilinear array, particles PVM sync.

PAWS MxN rectilinear array Nexus/MPI sync/async

Meta-Chaos MxN irregular data MPI/PVM ?

CCA MxN MxN rectilinear array framework sync/async

RedGRID MxN ? CORBA ?

“Goodies”

� other data structures (particles, unstructured meshes, trees...)

� more translations (not only MxN)

� advanced synchronization mechanism (coupling with visualization)

� extraction of correlated data

� extraction of a subset (sliding)

RedGRID, october 2003 – p.37/38



THE END.

RedGRID, october 2003 – p.38/38


	Outline
	
	Challenges
	Separation of Layout & Actual Data
	Communication Schedules
	HPF Decomposition
	
	Overview
	Data Decomposition
	Data Fields
	View Fields
	Communication Infrastructure
	CUMULVS Classical Example
	
	Overview
	Parallel Data Representation
	Illustration
	Communication Infrastructure
	PAWS Controller & Applications
	PAWS Classical Example
	
	Overview
	Linearization
	More Exotic Data Structures!
	Communication Infrastructure
	
	~CCA (Common Component Architecture)
	~CCA for HPC, Collective Interactions
	~CCA MxN Working Group
	MxN Interface Keypoints (2002/04)
	MxN Data Field Proposal (2002/06)
	MxN Data Field Proposal (2002/06)
	MxN Prototypes
	PAWS Translation Components
	
	Summary
	

