Conception et mise en œuvre d'une plate-forme de pilotage de simulations numériques parallèles et distribuées

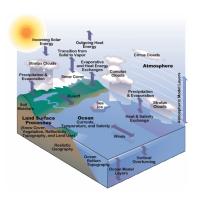
Nicolas Richart

LaBRI & INRIA Bordeaux - Sud-Ouest

20 janvier 2010

Plan

- Introduction
 - Problématique
 - Travaux existants
 - Positionnement et contributions
- Modèles pour le pilotage de simulations distribuées
 - Modèle de description
 - Modèle de pilotage
- Réalisation & Validation
 - Réalisation : EPSN2
 - Résultats
- Conclusion & Perspectives

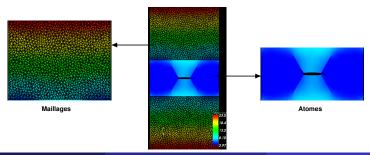

Plan

- Introduction
 - Problématique
 - Travaux existants
 - Positionnement et contributions
- Modèles pour le pilotage de simulations distribuées
 - Modèle de description
 - Modèle de pilotage
- Réalisation & Validation
 - Réalisation : EPSN2
 - Résultats
- Conclusion & Perspectives

Simulation numérique

Simuler des phénomènes physiques complexes à l'aide d'ordinateurs

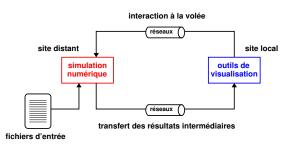
- Modélise des phénomènes complexes
 - \rightarrow mécanique des fluides, mécanique des solides, biologie moléculaire, ...
 - → couplages de modèles physiques
- Couplage de codes
 - → faire coopérer des codes existants
- Caractéristique des simulations
 - → multi-physiques (ex. couplage fluide/structure)
 - → multi-échelles (ex. couplage micro/macro en mécanique des solides)



Couplage de modèles pour la climatologie.

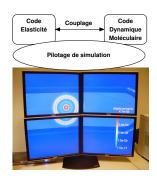
Exemple de simulation couplée

LibMultiScale : simulation couplée entre dynamique moléculaire et élasticité


- Plate-forme de couplage de codes multi-échelles
- Un code d'élasticité
 - \rightarrow code du Laboratoire de Simulation de la Mécanique des Solides (EPFL-ENAC-IIS-LSMS)
 - → maillage avec une donnée représentant le déplacement
- Un code de dynamique moléculaire
 - \rightarrow LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) développé au Sandia National Labs
 - → atomes (points) avec une position initiale et une position courante
- Visualiser le déplacement

Le pilotage de simulation

Analyse des résultats d'une simulation


- Exécution en mode "batch" et post-traitement
 - → la simulation génère des fichiers de résultats
 - ightarrow les fichiers sont analysés en fin de simulation
 - ightarrow suivant le résultat la simulation est ré-exécutée avec un nouveau jeu de paramètres
- Le pilotage de simulation
 - → les données sont visualisées en cours de simulation
 - ightarrow si le résultat n'est pas bon, les paramètres de la simulation sont modifiés "à la volée"

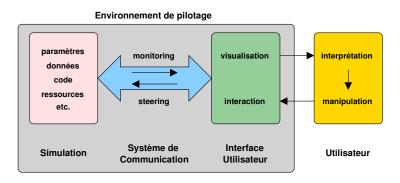
Le pilotage de simulation

Intérêts

- Comprendre la dynamique
 - → surveiller l'évolution d'une simulation
- Analyse de sensibilité
 - → avoir un retour direct sur les simulations
 - → pouvoir modifier les paramètres des simulations

Difficultés

- Modéliser les simulations
 - ightarrow flot d'exécution, données communes aux codes, mais de natures différentes
- Coordonner les opérations de pilotage
 - \rightarrow garantir la cohérence des opérations de pilotage, que ce soit entre des codes couplés, ou dans chacun des codes
- Performance
 - \rightarrow ne pas trop perturber les simulations


Plan

- Introduction
 - Problématique
 - Travaux existants
 - Positionnement et contributions
- Modèles pour le pilotage de simulations distribuées
 - Modèle de description
 - Modèle de pilotage
- Réalisation & Validation
 - Réalisation : EPSN2
 - Résultats
- Conclusion & Perspectives

Environnement de pilotage

Les trois composantes logicielles

- Simulation numérique
 - → boucle de calcul en temps
- Système de communication
 - → réalisation des transferts de monitoring et de steering
- Interface utilisateur
 - → visualisation + interaction

Environnement de pilotage

La modélisation des simulations

- Boucle de calcul (ex. CUMULVS)
 - → un ou plusieurs points d'instrumentation placés dans la boucle principale
- Modules/Composants (ex. SCIRun)
 - → modélisation des fonctionnalités des codes en modules
 - → représentation faite dans les PSE (Problem Solving Environement)
- Arbres de tâches hiérarchiques (ex. EPSN)
 - → représentation des codes en un ensemble de tâches imbriquées

Stratégie pour assurer la cohérence des traitements de pilotage

- Modèle data-flow
- Synchronisation forte
- Synchronisation faible ou planification

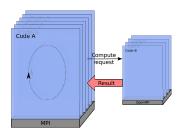
Environnement de pilotage

Les principaux environnements existants

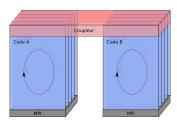
Environnement	Simulation	Modélisation	Pilotage
SCIRun (PSE)	mémoire partagée	module	data-flow
Cactus (PSE)	SPMD/distribuée	module	data-flow
RealityGRID	SPMD/couplée	boucle de calcul	synchro. forte
VISIT	SPMD	point	synchro. forte
CUMULVS	SPMD	boucle de calcul	synchro. faible
EPSN	SPMD	arbre en tâches	synchro. faible

EPSN est une bonne solution

- → thèse de A. Esnard (2005)
- → pas de support des simulations couplées


Plan

- Introduction
 - Problématique
 - Travaux existants
 - Positionnement et contributions
- Modèles pour le pilotage de simulations distribuées
 - Modèle de description
 - Modèle de pilotage
- Réalisation & Validation
 - Réalisation : EPSN2
 - Résultats
- Conclusion & Perspectives


Positionnement et contributions

Le pilotage de simulations numériques parallèles et distribuées

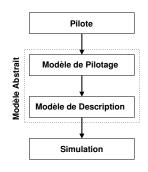
- Des "legacy codes"
- Les simulations couplées
 - → simulation Client/Serveur
 - → simulations M-SPMD (Multiple-SPMD)

Code Client/Serveur

Code M-SPMD

Positionnement et contributions

Contributions


- Modélisation des simulations
 - → modèle de représentation unique pour les simulations visées
 - → modèle hiérarchique en tâches (MHT)
 - → modèle pour les données distribuées
- Cohérence des traitements
 - → définir la cohérence d'un traitement
 - → coordonner les traitements dans la simulation
 - → assurer cette cohérence tout au long des traitements
- Performance

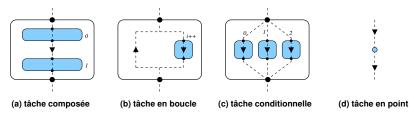
Modèles pour le pilotage de simulations distribuées

Recherche d'une approche générique pour le pilotage de simulations

Modèle de description

- ightarrow description en arbre de tâches de la structure d'un programme (MHT)
- ightarrow modèle basé sur l'instrumentation du code source
- → description simple des données, support + variables associées
- Modèle de pilotage
 - → pilotage par des requêtes
 - \rightarrow association des interactions possibles aux tâches du MHT

Le modèle doit indiquer à l'environnement de pilotage où, quand et comment interagir de manière cohérente avec le code de simulation.

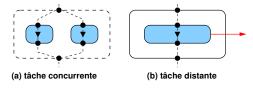

Plan

- Introduction
 - Problématique
 - Travaux existants
 - Positionnement et contributions
- Modèles pour le pilotage de simulations distribuées
 - Modèle de description
 - Modèle de pilotage
- Réalisation & Validation
 - Réalisation : EPSN2
 - Résultats
- Conclusion & Perspectives

Modèle Hiérarchique en Tâches (MHT) parallèle

Description des programmes en arbre de tâches

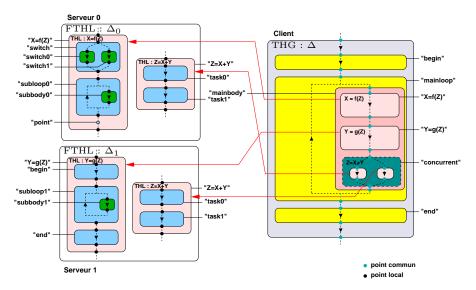
- Modèle simple basé sur des tâches hiérarchiques
 - → tâche contenant des sous-tâches
- Quatre types de tâches de base (simple, boucle, conditionnelle, point)
 - → capturer le flot d'exécution



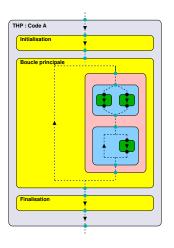
- Description à grain moyen du code de simulation
 - ightarrow annoter dans le source uniquement les tâches pertinentes
- Une tâche hiérarchique englobant toute la simulation

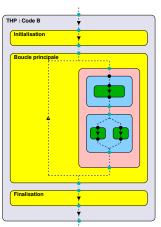
Modèle Hiérarchique en Tâches (MHT) distribué

Description des programmes distribués

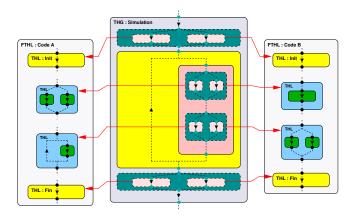

Deux types de tâches pour les simulations distribuées

- Une tâche hiérarchique englobant la boucle principale de la simulation (THG)
 - → le code client dans le cas de simulations Clients/Serveurs
 - → les parties communes dans le cas des simulations M-SPMD
- Une forêt de tâches hiérarchiques pour les méthodes distantes


Exemple de représentation d'une simulation distribuée

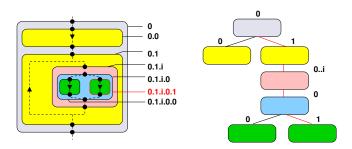

Exemple d'un code Client/Serveur

Exemple de représentation d'une simulation distribuée


Cas d'une simulation M-SPMD

Exemple de représentation d'une simulation distribuée

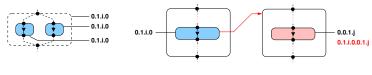
Cas d'une simulation M-SPMD


Un modèle unifié pour les simulations Clients/Serveurs et M-SPMD

Système de datation associé aux tâches hiérarchiques

Se repérer précisément dans le flot d'exécution et planifier des traitements

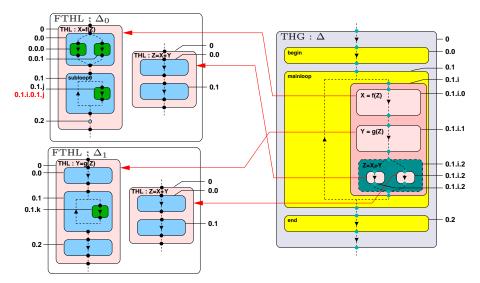
Pour une simulation parallèle


- Date de tâche
 - → concaténation des indices des tâches imbriquées
- Date de point
 - → date de tâche + position en début ou en fin de tâche
 - → associée aux points d'instrumentation
 - → relation d'ordre stricte et totale pour comparer les dates

Système de datation associé aux tâches hiérarchiques

Pour une simulation distribuée

- Date restreinte
 - → correspond aux dates dans un code
- Date complète
 - → correspond aux dates dans une simulation
- Masque de date
 - \rightarrow pseudo date permettant de définir un ensemble de dates ex. $0.1.\widetilde{2}.0 = \{0.1.2.0, 0.1.4.0, \dots, 0.1.2k.0\}$



Tâche concurrente

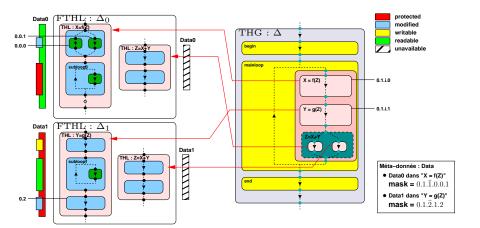
Tâche distante

Exemple de date pour une simulation distribuée

Dates associées à la simulation Client/Serveur précédente

Description des données

Les données simples (dans les codes)


- Support
 - → grilles, maillages, points, paramètres
- Ensemble de variables associées
- Contexte d'accès aux variables
 - → associé aux tâches
 - → readable, writable, modified, protected, unavailable
- Révision
 - → la date de la tâche à laquelle la donnée a été générée

Les méta-données (données transversales aux codes)

- Liste de variables
 - → sous-ensemble de variables des données des codes
 - → nom des codes d'origine des variables
- Informations d'accessibilité
 - → même contexte que ceux des variables des données simples pour *readable, writable, protected, unavailable*
 - → un masque de date définissant l'ensemble des révisions cohérentes entre elles

Exemple de données associées à une simulation distribuée

Données associées à la simulation Client/Serveur précédente

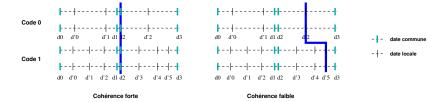
Plan

- Introduction
 - Problématique
 - Travaux existants
 - Positionnement et contributions
- Modèles pour le pilotage de simulations distribuées
 - Modèle de description
 - Modèle de pilotage
- Réalisation & Validation
 - Réalisation : EPSN2
 - Résultats
- Conclusion & Perspectives

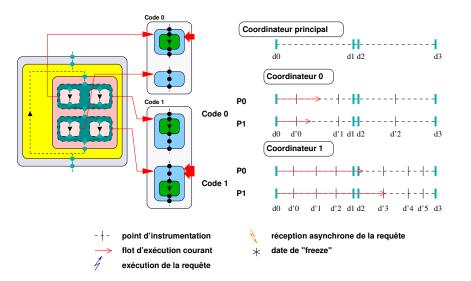
Système de pilotage par les requêtes

Modèle de pilotage par les requêtes

- Requêtes simples
 - → get, put, action, play/step/pause
- Requêtes répétées
 - → envoi périodique (getp), actions répétées

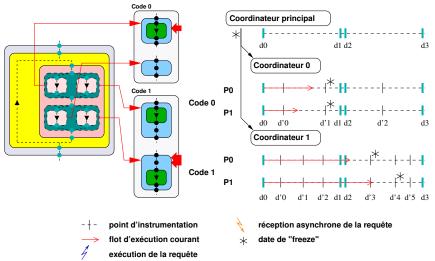

Le cycle de vie des requêtes

- Réception d'une requête
- Coordination
 - → coordination globale à la simulation
 - → coordination locale aux codes
- Vérification des conditions locales
 - → conditions propres aux différentes types de requêtes
- Exécution de la requête
- Acquittement

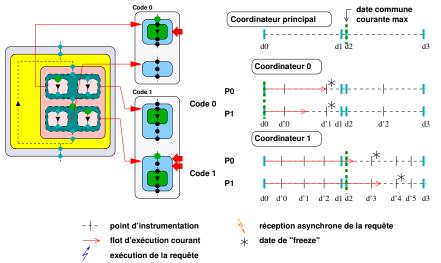

Cohérence

La cohérence des traitements côté simulation

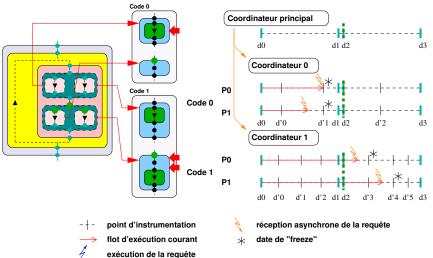
- Pour une simulation parallèle
 - → traitement exécuté à la même date pour tous les processus
 - → condition locale remplie (ex. pour des données : accessibilité)
- Pour une simulation distribuée
 - → pas de date commune à tous les processus
 - → cohérence forte : traitement exécuté sur une date commune à tous les codes
 - ightarrow cohérence faible : traitement exécuté à un même pas de temps global mais pas forcément à la même date
 - → choix de la cohérence d'après les besoins des traitements de pilotage



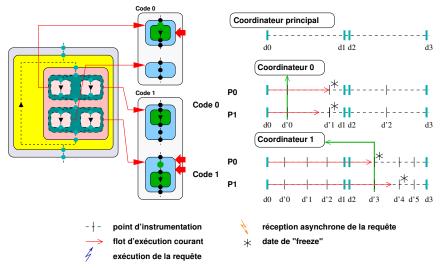
Planifier une date de traitement afin de garantir la cohérence temporelle


Planifier une date de traitement afin de garantir la cohérence temporelle

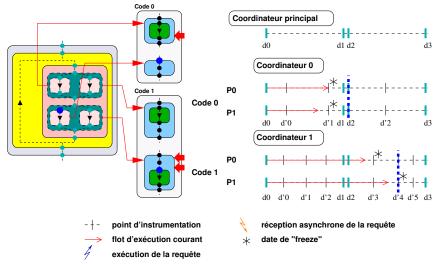
Réception d'une requête et "freeze" des points


Planifier une date de traitement afin de garantir la cohérence temporelle

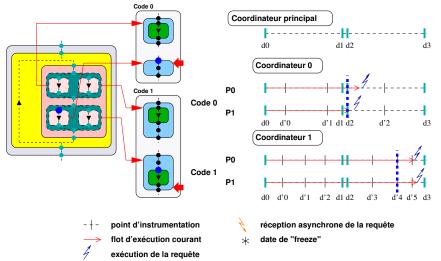
Détermination de la date commune courante max


Planifier une date de traitement afin de garantir la cohérence temporelle

Envoi de la date commune courante max avec la requête

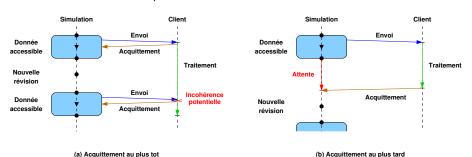

Planifier une date de traitement afin de garantir la cohérence temporelle

Détermination des dates courantes locales max


Planifier une date de traitement afin de garantir la cohérence temporelle

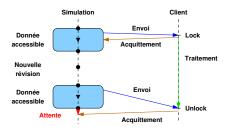
Détermination des dates de planification locales

Planifier une date de traitement afin de garantir la cohérence temporelle


Exécution asynchrone des requêtes

Cohérence coté client

S'assurer que les données restent cohérentes dans le client


- Problème potentiel avec les requêtes répétées
 - → les données sont envoyées dès qu'une nouvelle version est produite
- Dans EPSN
 - → acquittement au plus tôt : après les envois
 - → acquittement au plus tard : après les traitements
- Dans EPSN2
 - → acquittement au plus tôt avec verrou
 - → après réception des données, prendre un verrou en écriture sur les données et le relâcher une fois les post-traitements finis

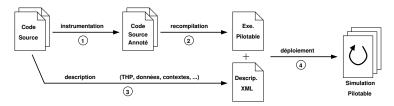
Cohérence coté client

S'assurer que les données restent cohérentes dans le client

- Problème potentiel avec les requêtes répétées
 - → les données sont envoyées dès qu'une nouvelle version est produite
- Dans EPSN
 - → acquittement au plus tôt : après les envois
 - → acquittement au plus tard : après les traitements
- Dans EPSN2
 - → acquittement au plus tôt avec verrou
 - → après réception des données, prendre un verrou en écriture sur les données et le relâcher une fois les post-traitements finis

Acquittement au plus tot avec verrou

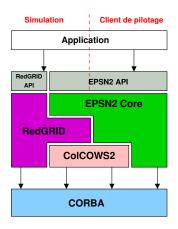
Plan


- Introduction
 - Problématique
 - Travaux existants
 - Positionnement et contributions
- Modèles pour le pilotage de simulations distribuées
 - Modèle de description
 - Modèle de pilotage
- Réalisation & Validation
 - Réalisation : EPSN2
 - Résultats
- Conclusion & Perspectives

Environnement pour le Pilotage de Simulations Numériques (EPSN)

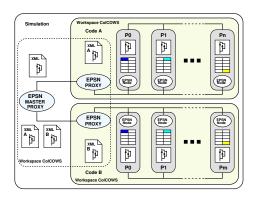
Principales fonctionnalités

- Pilotage de simulations existantes
- Contrôle à distance du flot d'exécution
- Extraction de données pour la visualisation en ligne
- Modification des données à la volée
- Plate-forme distribuée et dynamique basée sur CORBA


Processus d'intégration et de déploiement

Architecture d'EPSN2

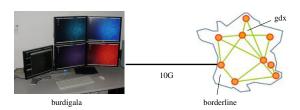
Couches logicielles de la plate-forme EPSN2


- ColCOWS2: mise en commun des objets CORBA et de communications collectives CORBA
- RedGRID : couche de description et de transfert des données
- EPSN2 Core : gestionnaire de requêtes, coordination, etc.

Architecture d'EPSN2

Architecture de la plate-forme EPSN2

- Un espace de travail ColCOWS par code avec un proxy
- Un nœud par processus de la simulation
- Un espace de travail contenant les proxy avec un proxy principal

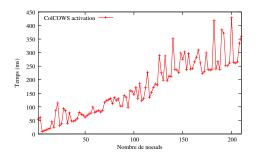


Plan

- Introduction
 - Problématique
 - Travaux existants
 - Positionnement et contributions
- Modèles pour le pilotage de simulations distribuées
 - Modèle de description
 - Modèle de pilotage
- Réalisation & Validation
 - Réalisation : EPSN2
 - Résultats
- Conclusion & Perspectives

Conditions expérimentales

- Cluster de calcul Grid'5000 Bordeaux
 - → gdx à Orsay : 126 bi-Opteron, réseau Giga-Ethernet
 - → borderline à Bordeaux : 10 quadri-Opteron dual-core, réseau Myrinet/Infiniband
- Cluster de visualisation
 - ightarrow 4 bi-Opteron, réseau Giga Ethernet/Infiniband, carte graphique nVidia Quadro FX 4500X2
- Logiciels
 - → MPICH2/MVAPICH, Open MPI
 - → OmniORB 4

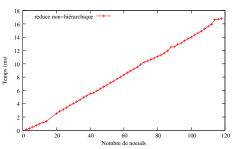

Mesures effectuées

- Mesures préliminaires sur la bibliothèque ColCOWS2
 - → activation d'un espace de travail
 - → communications collectives
- Mesures préliminaires sur le noyau d'EPSN2
 - → temps d'initialisation de la plate-forme
 - → temps de planification
 - → recouvrement dans les clients de visualisation
- Mesures sur une simulation M-SPMD

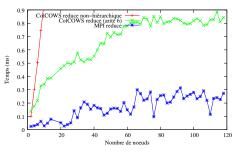
Mesures préliminaires sur la bibliothèque ColCOWS2

Activation d'un espace de travail ColCOWS

- Mise en commun de la connaissance des nœuds
- Effectuée lors de l'initialisation de la plate-forme EPSN

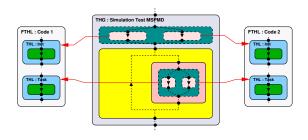


- Temps linéaire dû à la centralisation de l'information
- Aléas venant de la surcharge du service de nommage


Mesures préliminaires sur la bibliothèque ColCOWS2

Communications collectives de type reduce

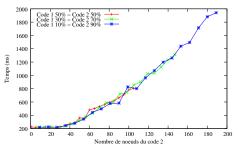
Communications utilisées dans EPSN2



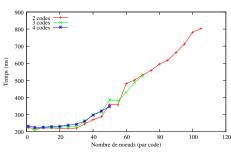
→ Gain d'un rapport 20

Mesures préliminaires sur le noyau d'EPSN2

Présentation de la simulation de test

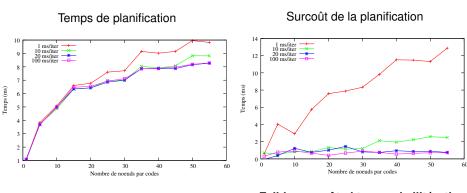

- Simulation M-SPMD
- Simulation paramétrable
 - \rightarrow nombre de codes couplés
 - → durée de la tâche de calcul (THL : *Task*)

Mesures préliminaires sur le noyau d'EPSN2


Temps d'initialisation de la plate-forme

Initialisation de la plate-forme pour 2 codes de simulation

→ Limité par le nombre de nœuds maximum d'un code


Initialisation de la plate-forme avec un nombre variable de codes

→ Légèrement influencé par le nombre de codes

Mesures préliminaires sur le noyau d'EPSN2

Temps de planification (500 requêtes "test" sur 1000 itérations)

 \rightarrow Temps de planification idéal de 8 ms

→ Faible surcoût si temps de l'itération
> temps de planification

Mesure préliminaire visualisation

- Deux tâches : une tâche où la donnée est produite A, une où elle est accessible B
- Un client faisant 100 ms de post-traitement

	Configuration (en ms)			Mesures (en ms)		Surcoût total
Type acquittement	tc_A	tc _B	tp	tc _A	tc _B	$sur tc_A + tc_B$
Acquittement tard	1	1	100	1.02	101.32	99.34
Acquittement tôt	1	1	100	1.05	99.08	98.13
Acquittement tard	1	100	100	1.02	101.19	1.21
Acquittement tôt	1	100	100	1.03	100.05	0.08
Acquittement tard	100	1	100	99.95	101.38	100.33
Acquittement tôt	100	1	100	99.99	1.37	0.36

- Acquittement au plus tard → recouvrement total si tc_B > tp
- Acquittement au plus tôt \rightarrow recouvrement total si $tc_A + tc_B > tp$

LibMultiScale: cas test 2D

Propagation d'une onde dans un cristal d'Argon

- ightarrow 286 262 atomes, 26 130 éléments triangulaires et 13 347 sommets
- → simulation exécutée sur 8 processeurs : 4 pour MD et 4 pour FE
- \rightarrow pas de temps à vide : 111.76 ms par itération
- \rightarrow pas de temps avec instrumentation seule : 112.83 *ms* (0.9 %)

	Surcoût				
Période (nb d'itér.)	1		10		
Dumper ParaView	531.16 <i>ms</i>	375.3 %	154.05 <i>ms</i>	37.8 %	
Transfert séquentiel (tard)	284.39 ms	154.5 %	124.18 <i>ms</i>	11.1 %	
Transfert séquentiel (tôt)	274.32 ms	145.5 %	124.90 <i>ms</i>	11.8 %	
Visu. séquentielle (tard)	450.82 <i>ms</i>	303.4 %	147.66 <i>ms</i>	32.12 %	
Visu. séquentielle (tôt)	308.65 <i>ms</i>	176.2 %	125.06 <i>ms</i>	11.9 %	
Visu // sur 4 nœuds (tôt)	242.08 ms	116.6 %	114.09 <i>ms</i>	2.1 %	

LibMultiScale: cas test 3D

Contact glissant de surfaces rugueuses

- → 1 033 124 atomes, 41 472 éléments tétraèdriques et 7 681 sommets
- → simulation exécutée sur 50 processeurs : 40 pour MD et 10 pour FE
- → pas de temps à vide : 469.05 *ms* par itération
- \rightarrow pas de temps avec instrumentation seule : 471.31 ms (0.5 %)

	Surcoût					
Période (nb d'itérations)	1		10			
Dumper ParaView	1 220.70 <i>ms</i>	160.2 %	542.93 <i>ms</i>	15.8 %		
Transfert séquentiel (tard)	888.10 <i>ms</i>	89.3 %	519.97 <i>ms</i>	10.9 %		
Transfert séquentiel (tôt)	864.79 <i>ms</i>	84.4 %	516.10 <i>ms</i>	10.0 %		
Visu. séquentielle (tard)	2857.14 ms	509.1 %	756.91 <i>ms</i>	61.4 %		
Visu. séquentielle (tôt)	1 200.73 <i>ms</i>	156.0 %	516.98 <i>ms</i>	10.2 %		
Transfert parallèle (tard)	698.77 ms	49.0 %	494.14 <i>ms</i>	5.3 %		
Transfert parallèle (tôt)	687.58 <i>ms</i>	46.5 %	490.26 <i>ms</i>	4.5 %		
Visu. parallèle (tard)	1 631.56 <i>ms</i>	247.8 %	623.19 <i>ms</i>	32.9 %		
Visu. parallèle (tôt)	761.40 <i>ms</i>	62.3 %	494.20 <i>ms</i>	5.3 %		

Conclusion

- Modélisation des simulations couplées de type Clients/Serveurs et M-SPMD
 - → modèle unique pour toutes les simulations visées et a priori générique
- Définition de la cohérence pour les traitements de pilotage
 - → définition de la cohérence en fonction des traitements de pilotage
 - → introduction des algorithmes assurant la cohérence de bout en bout
- Conception et réalisation de la plate-forme EPSN2
 - → prise en compte complète des simulations M-SPMD
 - → prise en compte partielle des simulations Clients/Serveurs
- Mesures des performances et validation sur une "vraie" simulation
 - → traitement de pilotage recouvert et cohérence assurée
 - ightarrow performances obtenues essentiellement avec les communications collectives

Perspectives

Perspectives pour la plate-forme

- Prise en compte totale des simulations Client/Serveur
 - → développements en cours dans l'ANR NOSSI
- Amélioration de la phase d'initialisation
 - → regarder une version distribuée du service de nommage CORBA
- Prise en compte des simulations parallèles hybrides multi-processus/multi-threads
- Ajout de fonctionnalités d'aide au développement
 - → aide au checkpointing
 - → outils de profiling

Perspectives pour la modélisation

- Prise en compte des simulations paramétriques
 - ightarrow simulation de type maître/esclaves
 - → pilotage du maître pour contrôler l'espace des paramètres à tester
 - ightarrow pilotage des esclaves en définissant la cohérence des données entre elles
- Enrichissement des contextes des tâches
 - ightarrow ajouter des informations sur les tâches effectuant des communications
 - → contextes permettant de spécifier quand on peut sauvegarder les données afin de faire du *checkpointing*