Actualités
  Période
semaine
ou mois
aucune période


  Thèmes:
Thèses
Colloques
Autres
Groupes
Tous les thèmes

   
  Liens:
Voir les thèses

Voir les colloques

Voir les autres événements

Voir la page des groupes

Accéder à l'intranet

Intitulé:   
Le nombre d'intervalles dans les treillis de m-Tamari
du groupe Combinatoire Énumérative et Algébrique

Date 2011-06-24  10:45-11:45
TitreLe nombre d'intervalles dans les treillis de m-Tamari 
RésuméOn considère l'ensemble T_n^m des chemins du plan issus de (0,0), formés de pas nord et est, finissant en (mn,n), et restant au dessus de la droite d'équation x=my. François Bergeron a décrit sur ces chemins un ordre, qui généralise l'ordre de Tamari (obtenu pour m=1). On verra que cet ordre donne une structure de treillis, pour tout m. François a conjecturé une belle formule --- qui ressemble à un nombre de cartes, soit un coefficient binomial divisé par deux termes linéaires en n --- pour le nombre d'intervalles dans le treillis T_n^m. C'est cette formule qu'on démontre. Elle était connue depuis quelques années pour m=1, d'abord prouvée récursivement par Chapoton, puis par Bernardi et Bonichon via une bijection avec des triangulations. Pour m général, une approche bijective reste à inventer, et nous procédons récursivement. Selon François B., ces mêmes nombres donnent la dimension d'un certain espace de polynômes --- mais c'est là une tout autre histoire, à coup sûr bien plus difficile. Travail en commun avec Éric Fusy (LIX) et Louis-François Préville Ratelle (LACIM). 
Lieu076 
OrateurMireille Bousquet-Mélou 



Aucun document lié à cet événement.

Retour
Retour à l'index