Thèse de Maxime Fuccellaro

25 Novembre 2024

Nouvelles les plus récentes

(Liste de toutes les brèves)

Entretien Hebdo Eco à TV7

(20 Février 2025)

Mercredi dernier, j'ai pu répondre aux questions de Stéphanie Lacazze, de Sud Ouest, dans le cadre de l'[hebdo éco](https://www.sudouest.fr/lachainetv7/economie/l-hebdo-eco/) de TV7. C'est une chaîne de TV locale du groupe Sud...


Lancement du Diplôme d'Établissement en IA

(13 Février 2025)

Le diplôme d'établissement "Experts en I.A." vient de prendre corps, tout juste le lendemain du sommet de l'IA à Paris (un temps d'avance !). Cette formation a été proposée grâce...


Page sur la Convention IA

(9 Février 2025)

Après des mois de travaux préliminaires, nous lançons officiellement le recrutement d'étudiants pour la convention citoyenne étudiante qui aura lieu dans les locaux de Bordeaux Métropole le Week End du...


IA dans la Formation Initiale

(30 Janvier 2025)

L’IA et la formation : de l’université au monde professionnel Avec Juliette Mattioli, "Expert Fellow" en IA chez Thalès, nous avons eu le plaisir de présenter, en deux heures, les...


IA & Formations

(24 Janvier 2025)

Dans le cadre d'une série de rencontres et de conférences organisées par France Travail (avec plus de 400 visiteurs au total), dans les locaux de Bordeaux Métropole, j'ai eu le...

Accompagner un étudiant jusqu’à l’obtention du titre de docteur, c’est toujours une aventure unique. Avec Maxime Fuccellaro, que j’ai co-supervisé avec Akka Zemmari, c’était l’occasion de se plonger dans un nouveau domaine pour moi : la dérive des modèles d’apprentissage. Poussé par les problématiques développées dans la chaire IA Digne de Confiance, j’ai trouvé là ce qui fait le sel de la recherche, c’est à dire un nouveau domaine dans lequel l’état de l’art est encore incomplet.

L’approche classique en apprentissage automatique consiste à entraîner un modèle supervisé qui obtient les meilleures précisions par rapport à la vraie classification du document visé. Mais, une fois mis en production, les données en entrée décrivant le document peuvent doucement glisser, changer, être bruitées. Ce phénomène est bien connu et entraîne de plus en plus de mauvaises classifications du modèle.

Cependant, peu de travaux actuels sont réalistes pour gérer ce problème. Beaucoup supposent de pouvoir mesurer la vérité terrain et donc la perte de précision. Mais quel intérêt d’avoir un modèle prédictif si l’on dispose de la vérité terrain ?

Dans ce travzail de thèse, Maxime a proposé des méthodes qui ne supposent pas de vérité terrain. De plus, il s’est intéressé à la dérive virtuelle, c’est à dire une dérive observée des données en entrée mais qui ne nécessite pas de réentrainement du modèle. Cela peut avoir un impact important sur la consommation énérgétique des modèles en production, puisque moins de réentraineemnt des modèles seront conseillés par le système.

C’était un plaisir de voir ces travaux aboutir, avec un jury éclectique que l’on a eu le plaisir de recevoir à Bordeaux. Merci à tous:

La photo de groupe de la thèse

Merci à Mangrove d’avoir financé cette thèse CIFRE qui a laissé une grande part au fondamental tout en offrant une grande liberté à Maxime.

Merci (et encore bravo) à Maxime d’avoir su mener cette thèse jusqu’au bout et d’avoir gardé tout au long de ces trois ans une passion intacte pour “fabriquer des solutions”, développer des nouveaux outils, chercher à les mesurer, suivre ses propres idées, intégrer les schémas dessinés au tableau en de vrais classificateurs.

PS: dès que la version finale du manuscrit est disponible, je mettrais à jour ce post.

(Dernière Modification: 30 Novembre 2024 )
(english version)
(liste de toutes les brèves)