We will look at an analogue theorem of the classical Erdős-Pósa Theorem. We prove a $GF(q)$-representable matroid analogue of Robertson and Seymour's theorem that planar graphs have an Erdős-Pósa property. Given a matroid $N$, we prove that for every matroid $M$ with bounded branch width, $M$ either contains $r$ skew copies of $N$, or there is a small perturbation of $M$ that doesn't contain $N$ as a minor.
This is joint work with James Davies and Meike Hatzel.
(Fernanda Rivera Omana) [University of Waterloo]
Vérifiez que vous êtes bien inscrits sur le site du [gdr-ifm-gt-graphes] : [ https://gtgraphes.labri.fr/pmwiki/pmwiki.php/Equipes/Equipes#membres | https://gtgraphes.labri.fr/pmwiki/pmwiki.php/Equipes/Equipes#membres ]
Remarks / Remarques
Find all the information of the working group on this [ https://graphesetoptimisation.labri.fr/pmwiki.php/Groupe/GT?userlang=en | web page ] .
Retrouvez toutes les informations du GT sur cette [ https://graphesetoptimisation.labri.fr/pmwiki.php/Groupe/GT | page web ] .